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Preface

The field of evolutionary computation (EC) can no longer be considered an
esoteric one. Today, after about thirty years of research, a rich corpus of
theory exists and many successful real-life applications are witnessing the
usefulness of EC heuristics in many fields. EC is a family of population-based
methodologies inspired by the interplay of natural selection and variation.
However, both the theory and the applications have tended to focus mainly on
mixing populations, also called panmictic populations. These are populations
in which there is no particular structure: any member of the population is
equally likely to “meet” any other member. But Darwin realized long ago
that populations may have a spatial structure and that this spatial structure
may have an influence on population dynamics. For instance, he remarked
how, when they were isolated on islands, some species evolved differently from
others that lived in more open environments. If we look around us, we too find
that geographical separation factors have helped shape evolution. There are
many examples, but one well-documented case is the spread of genomic traits
in human populations due to geographical separation followed by migrations
and mixing [29]. Also, as early as the 1960s, the book by MacArthur and
Wilson [94] used models of geographical separation and migration to explain
the spread and extinction of species. Thus, complete panmixia, although it
can be achieved in the laboratory, appears only as a limiting case in nature,
where spatial-separation effects seem to play an important role.

Today, it appears very clearly that topological structure largely determines
the dynamical processes that can take place in complex systems. The study of
both the structure and the dynamics of a given system is thus mandatory, if
one wants to understand and possibly exploit all the possibilities. Why, thus,
has evolutionary computation concentrated on mixing populations? One pos-
sible answer is that using a mixing population is both easier and good enough
for many purposes and that the mathematical analysis of the dynamics of
such populations is also usually easier. The next question is, thus: do spa-
tially structured populations have a role in EC, i.e. are they a worthy object
of study? I believe that the answer to this question should be positive. On the
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one hand, spatially structured populations are not new in EC: they have been
much less studied than panmictic ones, but the empirical results available
to date show beyond doubt that they can have beneficial effects. Secondly,
there is actually only a very low cost associated with setting up and run-
ning a structured population instead of a panmictic one. Sometimes, as in
the case of cellular populations, the cost of some genetic operations is even
lower than that for a mixing population. So, experimenting with structured
populations is generally easy and does not entail fundamental changes to the
EC paradigm. On the other hand, spatially structured population models and
their dynamical behavior are interesting objects in themselves; their interest
goes beyond their mere utility as an empirical way of improving results in EC.
This will be seen particularly in conjunction with some irregular population
structures that have been found to be extremely significant in many fields.

Often, the main motivation for using structured evolutionary algorithms
(EAs) is the possibility of physically distributing computational tasks over
different machines and having these tasks executed in parallel. This is com-
mon practice, and is an advantage as far as computing times are concerned,
especially for heavy-duty computations. However, the models and their imple-
mentations are two orthogonal factors. One may very well have a potentially
parallelizable structured EA model and run it on standard sequential hard-
ware. From the point of view of the model nothing changes, if the sequence
of operations is the same, but of course the time to completion is likely to be
less on truly parallel hardware. In this book I shall mainly describe models.
Their actual implementation will be left unspecified in general, although some
general comments on implementations will be given in an appendix to help
practitioners.

Spatial or relational aspects are important in population dynamics, but the
precise timing at which things happen also has an influence on the global
population behavior. For this reason, I believe that space and time should be
considered together, and this is precisely the point of view taken here. Thus
synchronously and asynchronously evolving populations will be analyzed, es-
pecially with respect to cellular regular and irregular structures.

There is thus a double motivation for writing the present book. The first is
the feeling that these considerations are indeed important, and the second is
the fact that a broad, unified treatment of the field is lacking. Indeed, there
exists an excellent book by Cantú-Paz on parallel genetic algorithms (GAs)
[24]. But, as the title indicates, although the treatment is deep, the scope
is rather specialized to master–slave and island GAs. Likewise, the several
review articles that have appeared are useful, but they lack many details.

A word of caution is in order here. Spatially structured populations are
relevant in many contexts, both in the natural sciences and in artificial mod-
els. It would have been an impossible task for me to try to give a decent
account of all those different areas of investigation. Thus, it should be made
clear that I only describe in this book structured populations as they are used
in evolutionary algorithms. And even then, not all the families of EAs will
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be equally represented, for I shall concentrate on genetic algorithms and ge-
netic programming. This last point is not a problem, for most considerations
will extend naturally to other EAs. Other interesting families of EAs, such
as multiobjective EAs and EAs with constraint handling are not dealt with
directly. This is a pity, since most problems of practical interest are of this
kind. However, I had to keep the length of the book to a reasonable size for
a monograph, and many ideas will also be applicable, mutatis mutandis, to
these more specialized EAs.

This book does not try to cover real-life applications either. There have
been many applications of structured EAs in many fields but our focus is on
models, theory, and the empirical properties of structured EAs. The interested
reader will find an abundant sampling of successful applications of spatially
structured EAs in the proceedings volumes of mainstream conferences such as
the Genetic and Evolutionary Computation Conferences (GECCO), Parallel
Problem Solving from Nature (PPSN), and the Congresses on Evolutionary
Computation (CEC). Thus, the book is more suitable for advanced undergrad-
uate and graduate students. However, it should also be useful for professionals
and practitioners who would like to use structured populations in their appli-
cations of EAs.

Many other interesting objects of study, such as more general population-
based artificial life systems, swarm intelligence models, natural-population,
ecological, and social simulations, are not part of the book’s subject matter
either. In spite of this, several general conclusions that depend on the popu-
lation structure will also teach us something valuable in apparently different
contexts.

Another choice that had to be made concerns the level of acquaintance with
EAs that is required for the reader to benefit from this book. It would have
been nice to make the book self-contained by adding one or two introductory
chapters on the main families of EAs. However, there are today several good
introductory books on EC, some of which are listed in the references (e.g. [46],
[99], [54]), or [145], if one looks for a more concise treatment. Thus, introduc-
ing this material with the necessary detail would duplicate existing work and
would make the present book thicker and more awkward to write and read.
Because of this, I have decided not to include such detailed introductory ma-
terial, capitalizing on the assumption that the typical reader is likely already
to possess a good knowledge of EC in general. However, if this is not the case,
the present book will have to be supplemented with an introductory book on
EAs.

Most books are the result of collective work, be it implicit or explicit, and
this one is no exception. I have drawn from the work of many researchers
who have paved the way for a better understanding of structured EAs in the
last ten years. Closer to me, there are many colleagues who have contributed
work, ideas, discussions, and suggestions. I should thus thank many people,
but I would like to single out the following persons, for their help has been
really outstanding. My former and present graduate students F. Fernández,
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M. Giacobini, and L. Vanneschi, and my colleagues E. Alba, G. Spezzano,
and A. Tettamanzi all contributed time and ingenuity to our common work
on evolutionary computation using structured populations during the last few
years. Just looking at the references will give an idea of my debt to all of them.
M. Giacobini and L. Vanneschi also read several chapters and drew many of
the figures. Other people helped in shaping my thinking about structured
EAs, especially M. Sipper, who also made useful comments on Chap. 7.

Other people have provided support in several ways. In particular, I would
like to thank Gusz Eiben, the Natural Computing Series Editor, for his en-
couragement and positive attitude toward this work. I am also deeply thankful
to Springer’s staff and Ronan Nugent, who provided invaluable help.

To all of them, and to the many who are not explicitly named, many thanks.

June, 2005
Marco Tomassini
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1

Setting the Stage for Structured Populations

The aim of this initial chapter is to introduce some concepts related to struc-
tured populations in such a way that they are seen in the more general context
of graphs or networks. With only a small cost in mathematical notation, this
will allow us to discuss many apparently distinct features of populations under
the umbrella of an existing and well-established mathematical notation.

Structured populations are just populations in which any given individual
has its own neighborhood, which is smaller, sometimes much smaller, than the
size of the population. In other words, instead of all the other individuals in the
population being consirered as potential mates as in panmictic populations,
only those that are in the same neighborhood can interact. Although this
“isolation by distance” is often associated with geographical separation, this
is not strictly required in evolutionary-algorithm (EA) models, where only
the “relational aspect” matters. In fact, there are many examples of biological
niches and isolated or semi-isolated populations in biology in which physical
distance is the key factor keeping these demes nearly independent of each
other. And many such biologically inspired models have been proposed for
EAs. However, what counts is the neighborhood relationship, and this can
be of any type, as long as it makes algorithmic sense. We shall see many
examples of this in the following chapters. Thus, we are led to the conclusion
that the important idea is the ensemble of relations among individuals, be
they truly spatial or not. The mathematical objects that are required for
describing this state of affairs are graphs. This means that we do not always
need the concept of a metric space and an associated distance, such as the
Euclidean distance. More often, distances between individuals will be given by
the network itself, as measured along the path that links the two individuals
in the graph. In these relational graphs the rules governing the construction
of the graph do not depend upon any external metric between the vertices.
For example, the electrical supply network of a given region would be a kind
of spatial graph, since the distances between the graph nodes (generators,
transformers and so on) are relevant, while the network of acquaintances in
a society conveys only relationships, although other kinds of non-Euclidean
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distances can be associated with such networks. In the realm of population
graphs, and with a slight abuse of language, I shall often call these population
structures topologies, be they truly spatial or not.

Since graphs are a suitable mathematical description for structured pop-
ulations, I shall give here a short introduction to the relevant concepts and
definitions that will be used in the rest of the book. Graph theory is a well-
developed branch of discrete mathematics and it would be impossible, and
also useless, to try to give an account of it here, however brief. Instead, I shall
limit myself to the introduction of the concepts that are really useful to us. In
Chap. 6, we shall need a few more ideas about graphs. Since these concepts
are not needed yet, I shall defer their presentation to the relevant place.

1.1 Useful Definitions for Graphs

For ease of reference, I collect here a few definitions and some nomenclature
for graphs that will be used throughout this work. The treatment is necessarily
brief: a more detailed account can be found, for example, in [22].

Let V be a nonempty set called the set of vertices or nodes, and let E be
a symmetric binary relation on V , i.e. a set of unordered pairs of vertices.
G = (E, V ) is called an undirected graph, and E is the set of edges or links
of G. In a directed graph edges have a direction, i.e. they go from one vertex
to another, and the pairs of vertices are ordered pairs. Figure 1.1 shows an
undirected and a directed graph.

1

2

5

3

4

1

2

3

45

(a) (b)

Fig. 1.1. (a) An undirected graph. (b) A directed graph

A subgraph of G is a subset of a graph’s edges and associated vertices that
constitutes a graph. That is, G

′
= (V

′
, E

′
) is a subgraph of G = (E, V ) if

V
′ ⊆ V and E′ ⊆ E. For example, the set of vertices 1, 2, 4, 5 in the graph G

shown in Fig. 1.1 a induces a subgraph of G.
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When vertices (u, v) of an undirected graph G form an edge, they are said to
be adjacent or neighbors. The neighborhood of a vertex v is the set of vertices
that are adjacent to v in G, not including v. For example, the neighbors of
vertex 4 in Fig. 1.1 (a) are 2, 3, and 5. The degree k of a vertex is the number of
edges impinging on it (or, equivalently, the number of neighbors). For directed
graphs, one can correspondingly define the outdegree of a vertex v, which is the
number of edges that leave v, and the indegree, which is the number of edges
that enter the vertex v. The adjacency relation is not symmetric for directed
graphs. For example, vertex 1 in the graph in Fig. 1.1 b has an outdegree of
2 and an indegree of 0.

A path from vertex u to vertex v in a graph G is a sequence of edges that
are traversed when going from u to v with no edge traversed more than once.
The length of a path is the number of edges in it. For example, the sequence
〈1, 2, 3, 5, 4〉 is a path from vertex 1 to vertex 4. The shortest path between
two vertices u and v is the path with the smallest length joining u to v. Thus,
in Fig. 1.1 a, the sequences 〈1, 5, 4〉 and 〈1, 2, 4〉 are the two shortest paths
from node 1 to node 4. Edges can have weights associated with them in some
applications, and these weights are used in the calculation of the path lengths.
If nothing is stated, each edge has a unit weight.

Cyclic paths are particular paths in a graph whose first and last vertices
are the same. A tour is a particular cycle that contains every vertex. Again
referring to Fig. 1.1 a, 〈1, 2, 4, 5, 1〉 is a cycle, while 〈1, 2, 3, 4, 5, 1〉 is a tour.

Fig. 1.2. An unconnected graph with two connected components

The maximum distance (path length) between any two connected vertices
of a graph is called the diameter of the graph.

A graph is connected if there is a path between any two vertices. A graph
that is not connected consists of a set of connected components, as illustrated
in Fig. 1.2.

A completely connected undirected graph G with |V | = N vertices has an
edge between any two vertices. The total number of edges is thus N(N −1)/2.
Figure 1.3 shows an example of such a graph with N = 5.



4 1 Setting the Stage for Structured Populations

A clique in an undirected graph G is a completely connected subgraph of
G.

A sparse graph has a number of edges |E| � N(N − 1)/2. A dense graph
has a number of edges ∝ N2.

A star graph is a network in which there is a particular node (the cen-
ter) that is connected to all the other nodes, while the rest of the nodes are
connected only to the center (Fig. 1.4).

Fig. 1.3. A complete graph with five vertices

Fig. 1.4. A star graph

Finally, an hypergraph is like an undirected graph, but each edge connects
an arbitrary subset of vertices and is called a hyperedge.

A graph G in which all the vertices have the same degree k is called k-
regular. Complete graphs are obviously regular. Another important class of
regular graphs for us is the family of lattice graphs. A d-lattice (or d-dimen-
sional lattice) is an unweighted, undirected graph in which each vertex has
the same degree k, with k ≥ 2 and k ≥ 2d. For example, with d = 1 and k = 2
and with d = 1 and k = 4, one obtains the ring structures shown in Fig. 1.5.
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(a) (b)

Fig. 1.5. (a) one-dimensional lattice with k = 2. (b) one-dimensional lattice with
k = 4. Periodic boundary conditions are assumed

With d = 2 and k = 4 we have a torus, which is a topological entity with
periodic boundaries (see Fig. 1.6).

Fig. 1.6. A torus topology. This is obtained by wrapping the rows and columns of
a two-dimensional grid around on themselves

Some of these graph types have been often used in evolutionary computa-
tion, and the dynamical properties of populations structured in these ways
will be studied in detail in Chaps. 4 and 5.

1.2 Main Graph Structures of Populations

I shall now introduce the principal structures of populations that have been
used in EAs, and these will be the base types for our analysis. Here I shall
discuss only their graph-like properties. The dynamical evolutionary processes
taking place in the populations will form the main theme of the book and will
be dealt with in detail in the following chapters. Networks can be considered
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as the backbone on which dynamical processes take place. Therefore, networks
are a prerequisite for describing the behavior of complex systems. Of course,
the static and dynamic views are not divorced in reality, since there are mu-
tual interactions between them. Think, for instance, of the communication
processes taking place on a network that is itself continually changing, such
as the Internet. However, our artificial structures are simpler, and it is useful
to single out and consider their static structure first.

1.2.1 Island or Multipopulation Models

Here the idea is simply to divide a large panmictic population into several
smaller ones. This model is usually called the island model or multipopulation
model, and is schematically illustrated in Fig. 1.7. Each subpopulation runs
a standard sequential EA, and individuals are allowed to migrate between
populations with a given frequency. The migration directions are represented
in the figure by arrows.

Fig. 1.7. A multipopulation structured model. Each “blob” represents a panmictic
subpopulation. Subpopulations are loosely connected by periodically sending and
receiving individuals according to the pattern shown by the arrows

In graph theory terms, each subpopulation is a vertex of the graph, and the
edges are given by the migration links between islands. Note that the graph is
usually a directed one. At a lower level, each island could be seen virtually, in
turn, as containing a population structured as a complete graph. Several pat-
terns of connection have traditionally been used. The most common ones are
rings, two-dimensional and three-dimensional lattices, stars, and hypercubes.
We shall deal with these models at length in Chaps. 2 and 3.



1.2 Main Graph Structures of Populations 7

(a) (b)

Fig. 1.8. (a) A one-dimensional-ring cellular population structure. (b) A two-di-
mensional-grid cellular population structure. In both cases each node is a single
individual, and the edges wrap around in the grid case

1.2.2 Cellular Models

In cellular models, also called diffusion models, the individuals making up
the population are usually disposed according to a regular lattice topology,
i.e. a lattice graph (see Sect. 1.1). Two examples in one dimension and two
dimensions, respectively, can be seen in Fig. 1.8, where the different shapes
of the nodes represent potentially distinct individuals. In graph theory terms,
each individual is a vertex of the graph, and edges link adjacent individuals, i.e.
neighbors. In these cellular populations, each individual interacts only with a
few other individuals in its neighborhood, and all genetic operations are local.
Lattice-graph cellular populations will be examined in detail in Chap. 4. Of
course, we are by no means limited to cellular models that are mapped onto
regular lattices, although this has been the rule in the EA world. We shall see
in Chap. 6 that many other graph topologies are possible and useful, including
random and irregular structures.

Finally, it is worthwhile to make a comment on an interesting proposal
of Sprave [141], who suggested using the hypergraph formalism to describe
structured EA populations. Hypergraphs (see Sect. 1.1) are a generalization
of simple graphs in which edges may span a subset of vertices. Hypergraphs
can thus model any population structure, including the limiting panmictic
case. Sprave’s suggestion is attractive because it allows an elegant unified
description of structured populations. However, for the sake of simplicity, and
also because some new graph structures (see Chap. 6) are rather clumsy to
represent with hypergraphs, I have chosen to stick with the more standard
view of simple graphs.
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1.2.3 Other Topologies

It is of course possible to design and implement population topologies more
complex than the “basic” types described above. For example, one could have
a multipopulation structure in which each subpopulation has a cellular topol-
ogy. Alternatively, it would be possible to have a hierarchical island system,
in which each island at an upper level contains a number of islands at a lower
level. Exchanges would then be limited to taking place between islands at the
same level.

Fig. 1.9. A hierarchical EA model in which the populations in the loosely connected
islands have a lattice structure.

Several other possibilities spring to mind as well. Figures 1.9 and 1.10 pro-
vide a schematic view of two hierarchical, or hybrid, population structures
such as those described above.

Fig. 1.10. A hierarchical EA model in which each island at the outer level contains
a multipopulation EA. The communications between islands at the inner level are
more frequent than the migrations at the outer-island level
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Some of these structures, or analogous ones, have indeed been used in empir-
ical work with good results. It would be tempting to try to extend the analysis
that we shall do for the simpler cases to these more complex situations. How-
ever, I feel that our tools are not yet sharp enough to successfully deal with
these more difficult cases (note than an analysis of a hierarchical master–slave
EA model has been presented by Cantú-Paz in Chap. 8 of his book [24]). On
the other hand, the simpler topologies already offer an extremely rich behavior
and constitute a large field of investigation in themselves. As a consequence,
I shall limit myself in the following to the description and analysis of “pure”
island and cellularly structured population models.



2

Island Models

2.1 History and Background

This chapter is devoted to the island or multipopulation model, as it is closer
to the original panmictic setting. As such, the corresponding EAs do not need
a radical restructuring and are just simple variants of the standard ones.

As was observed in Chap. 1, the phenomenon of the formation of niches is
common in biology. Niches impose mating restrictions, and thus the possibility
of species differentiation. Islands and high, isolated valleys, for example, are
the kinds of natural environments that can favor such evolutionary phenom-
ena. Biologists have been aware of this for a long time, and Darwin himself
commented on it. Although diversity tends to be low in each deme, overall
population diversity is maintained through isolation. When other individuals
have the possibility of interacting with previously isolated demes, interest-
ing evolutionary processes may follow, such us colonization, extinctions, and
punctuated equilibria, which are “jerky, or episodic, rather than a smoothly
gradual, pace of change in evolution”, in the words of Gould [49], one the
fathers of the concept.

Thus, observations of real biological populations offer a number of ideas to
evolutionary-computation researchers trying to improve the efficiency of their
algorithms. In fact, these researchers were quick to take inspiration from the
biological world as multipopulation EAs started to appear in the 1980s. We
may cite, among others, the pioneering work of Grefenstette [73], Grosso [74],
Tanese [144], and Cohoon et al. [32] on genetic algorithms. In the case of
evolution strategies, Rudolph [123] implemented one of the first distributed
models, and the work of Duncan [42] was an important milestone in evolu-
tionary programming.

The purported advantages of island EAs are that they are supposed to ex-
plore a problem’s search space more evenly and that they may fight population
stagnation thanks to a better capability for maintaining overall diversity. We
shall see that most empirical results to date, and some theoretical conclusions,
tend to confirm these hopes.
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The main idea of island EAs is to subdivide a single panmictic population of
size N into s islands, or subpopulations, of smaller size n, such that

∑s
i=1 ni =

N . Of course, the size of a distributed population need not bear any particular
relationship to that of a panmictic one; however, this view will be useful later
when we compare the performance of island models with that of panmictic
ones. Each subpopulation runs a standard EA as if it were isolated from
the rest. However, from time to time, islands send and receive individuals
to and from other islands. These groups of individuals, of size m � ni, are
often aptly called “migrants”. The exchange can be made synchronously or
asynchronously in time, in the sense that either all populations exchange
individuals at fixed, predetermined times, or the exchanges may happen at
independent times. The following pseudocode explains how a synchronous
island EA works:

Initialize s subpopulations of size n each
generation = 0
while not termination condition do

for each subpopulation do in parallel
Evaluate and select individuals by fitness
if generation mod frequency = 0 then

Send m best individuals to a neighboring population
Receive m individuals from a neighboring population
Replace m individuals in the population

end if
Produce new individuals using selection and variation operators

end parallel for
generation = generation + 1

end while

It appears from the above schemata that, in addition to the usual EA
parameters, the model needs a few new ones: the number of subpopulations,
the frequency of migration of individuals, the number of migrating individuals,
and the communication topology. The existence of these additional degrees of
freedom makes the algorithm more flexible, but also more difficult to control,
since the parameters may interact in many ways. Unfortunately, there is no
general theory to help us select suitable values for these parameters except, to
some extent, in the case of genetic algorithms (GAs), as we shall see. To date,
these parameters usually been set set empirically, building on the experience
of previous work. Nevertheless, we shall see in Chap. 3 that there have been
some systematic explorations of the parameter space that can be helpful in
this respect.

Usually, the m migrating individuals are the top m in the original subpopu-
lation, or chosen from among the best. Several individual-replacement policies
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have been described in the literature. One of the most common is for the m
migrating individuals to displace the m worst individuals in the destination
subpopulation. This is also the policy used in the simulations described here.

Several topologies for migration between islands can be used. The most
common one is the “ring”, in which populations are topologically disposed
along a circle and exchanges take place between neighboring subpopulations,
as illustrated in Fig. 2.1. Another possibility is “meshes of islands”, possibly
toroidally interconnected, in which migration occurs between nearest-neighbor
nodes (see Fig. 2.2). One possible drawback of these static topologies is that
some bias might be introduced by the repeating exchange pattern. Dynamical
topologies, where destination nodes change with time, seem more useful for
preserving diversity in the subpopulation. For example, good results have been
obtained with the use of a “random” topology [50], where the destination
population is randomly chosen at run time.

Different topologies have different diameters (see Sect. 1.1). The diameter
of the graph contains an indication of the speed at which information will
travel through the network, which is an important consideration for struc-
tured EAs, as we shall see. The shorter the diameter, the faster information
will travel across the network. Rings have a large diameter O(n), where n
is the number of subpopulations, while square grids have a diameter O(

√
n).

Other topologies, such as random graphs and small-world graphs (see Chap.
6) have a shorter diameter O(log n); the situation is the same for hypercubes.
Completely connected graphs and star graphs obviously have a diameter of
one. Section 3.6 presents empirical results on the influence of the topological
arrangement of the subpopulations on the evolutionary process.

Fig. 2.1. Island model with ring topology. The subpopulations are arranged in a
ring and individuals are exchanged between neighboring populations clockwise
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Fig. 2.2. Grid island topology. Populations communicate with their north, south,
west, and east neighbors. The grid is folded into a torus

2.2 Homogeneous and Heterogeneous Islands

In the previous description it has been tacitly assumed that the EA param-
eters, the subpopulation size, and the representation of individuals are the
same in all the islands. If this is the case, the EA is called homogeneous. This
is the simpler and customary choice, but it need not always be the case. In-
deed, it is possible, and sometimes useful, to have different parameters and/or
different representations in different islands. It is also possible, as in some
panmictic EAs, to allow for islands of variable size. We shall call these island
models collectively hetereogeneous and nonstandard. In this chapter and the
two that follow, we shall deal with homogeneous island models exclusively.
In fact, these models are wellknown and easy to implement, and they usually
give good results, as we shall see in the following chapter. Moreover, there
is a fair amount of theoretical results for them, which is not the case for the
heterogeneous models. However, we cannot ignore heterogeneous models only
on the grounds that they are difficult to understand, since good results have
been obtained in practice. Thus, in Chaps. 7 and 8, I shall present some of
these models.

2.3 Theoretical Results

The early work on island EAs was largely empirical in character. There was
a general feeling that sparsely communicating subpopulations were advanta-
geous in terms of problem-solving capabilities, and they also saved computing
time, when implemented on parallel or distributed hardware. However, the
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reasons why the models were efficient were largely unknown. It was also un-
clear how one should choose the several new parameters that were needed.
Another important question is the following: what are the problem classes
that benefit most from a distributed population setting and why?

Thus, a basic understanding of the workings of island EAs is necessary but,
even today, there is no clear-cut answer to the questions above. Some progress
has been made, however, especially by Cantú-Paz for binary-coded GAs as
described in his book [24] and the articles mentioned therein. Before describ-
ing Cantú-Paz’s main results, I shall briefly comment on early investigations
aimed at understanding the main dynamical aspects of multipopulation EAs.

One of the first attempts to theoretically analyze an island model GA was
published by Pettey and Leuze [116]. In this work, a schema theorem was
derived for an island system in which individuals chosen uniformly at random
are sent to all other populations in each generation. Pettey and Leuze proved
that this model maintains the same efficiency as does a panmictic-population
GA, and that the expected number of trials can be bounded from above
by an exponential function, i.e. the same global behavior that is observed
for panmictic GAs. While the analysis did not take into account the effect
of varying parameters such as the island size, the migration rate, and the
migration frequency, it was a useful first step.

More recently, Whitley and coworkers asked the following important ques-
tion: under what conditions is a given problem suitable for an island model?
In other words, are there features of a problem that allow a multipopulation
EA to solve the problem more efficiently (in the algorithmic sense) than does
a panmictic EA? The issue was first raised in [143], and it was given a partial
answer in [159]. Whitley et al. used Vose’s infinite-population model to hint
at the fact that multiple islands are more likely to maintain diversity and pro-
duce new solutions, thus showing superior search performance compared with
single-population models. Then Whitley et al. studied the particular class of
linearly separable problems, i.e. those in which the objective function F is a
sum of s independent nonlinear subproblems Gi: F =

∑s
i=1 Gi. Using a prob-

abilistic argument, they built a simple model that was then tested on two
linearly separable functions: the fully deceptive order-4 function and the Ras-
trigin function. Using their steady-state distributed version of the GENITOR
software, they performed 30 runs for each problem and each combination of
parameters. The parameters were the number of subpopulations, the migra-
tion rate, the migration frequency, and the presence or absence of mutation.
Crossover was always used. They found that larger populations were useful
for the Rastrigin function, but did not help much in the deceptive problem.
The conclusion was that islands may be useful when increasing the total pop-
ulation size does not help to solve the problem. They found it difficult to
generalize the conclusions, owing to the interplay of the many parameters
and the complexity of the process. Among other things, the optimal solution
has a nonnegligible chance of being contained in the initial populations, for
large population sizes, which of course may spoil the results. Nevertheless, al-
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though many questions remained unanswered, this study has shed some light
on the behavior of island models.

As I said above, the recent work of Cantú-Paz on GA island models is the
most thorough and quantitative to date in the field. Here I shall only highlight
the main results. For the details, the reader is referred to Cantú-Paz’s excellent
presentation in [24].

Cantú-Paz and Goldberg [25] extended Goldberg’s previous work [66] on
the sizing of single populations for multiple islands. Of course, the size of the
populations is the single most important factor that will influence the behavior
of the collective system: islands that are too small will fail to provide enough
diversity and will converge prematurely. On the other hand, if the islands
are too large with respect to a single population that solves the problem,
extra useless work will be performed. Cantú-Paz and Goldberg focused on
modeling the speedup offered by the multipopulation system for reaching a
solution of the same average quality as the one found by use of the serial
process. They treated two important bounding cases of multipopulation GAs:
a set of completely connected islands, and a set of isolated islands. In the com-
plete-graph case, the migration rate and frequency were set to the maximum
value, i.e. every island exchanged individuals with every other island in each
generation. The main conclusions were that the speedup with respect to the
single panmictic population was better for the communicating system than
for the isolated model. Cantú-Paz and Goldberg also found that, for these
limiting cases, there was an optimal number of islands and a corresponding
island size that maximized the speedup.

Chapters 5 and 6 of Cantú-Paz’s book [24] extend the analysis to arbitrary
topologies, an arbitrary number of islands, arbitrary sizes, and arbitrary mi-
gration rates. Markov chain methods are used for modeling the evolutionary
process, and the accuracy of the models is tested experimentally on fully de-
ceptive functions by varying the parameters of interest. The observation is
that the solution quality improves with higher migration rates and denser
topologies. However, the communication cost tends to increase in this case,
and there is a trade-off between solution quality and algorithm speed. It is
also shown that different topologies with the same number of neighbors per
island reach almost equivalent solutions. We shall see in the next chapter that
experimental results tend to qualitatively confirm these model predictions.
With a fixed topology, the optimal number of islands is found to be

O

(√
nTf

Tc

)
,

where n is the population size, Tf is the time required to evaluate an individ-
ual, and Tc is the mean time required to communicate with another deme.
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2.4 Asynchronous Islands

Timing considerations will come up often in this book, for the temporal se-
quence of operations can make a notable difference to the resulting dynamical
processes. We shall see that these ideas have more significant consequences
in the case of cellular systems in Chaps. 4 and 5. But it is worth introducing
some concepts of synchronous and asynchronous evolution for multipopula-
tion models too. Essentially, synchronous systems work in lockstep as if they
were reacting to the ticks of a global clock. Of course, there can be different
degrees of lockstep. In computer hardware, for example, in each clock cycle
one or more elementary operations are executed. In island models, which are
rather coarse-grain, there is more freedom: the islands evolve independently
for a certain time, then they synchronize and send and receive a certain num-
ber of individuals. At the end of this “handshaking” phase, the islands are
computed again in an independent manner. This description corresponds es-
sentially to the pseudocode of Sect. 2.1. Of course, synchronous send and
receive implies that everything must wait for the slowest process to finish
the current generation before the exchange takes place. Although we are not
talking about computer implementations here, it is worth noticing that this
idle wait might cause a synchronization overhead whenever the model is im-
plemented on physically replicated hardware. In practice, most EAs take on
average the same time to process the same number of individuals, and thus
the differences are small, except in the case of variable-length-representation
EAs, such as in genetic programming.

Asynchronous systems, on the other hand, do not have a global clock and
need not synchronize at specified points of the computation. In Chap. 4 we
shall study an extreme case of this: cellular EAs in which each individual is
updated at arbitrary times. Here we consider a coarser-grain model of asyn-
chronism based on communicating islands. In this case, the algorithm is es-
sentially unchanged except for the fact that sending and receiving individuals
may be done at independent times: an island sends a boat of migrants at some
point in time, and the destination island gets the individuals when it is ready
to do so.

Asynchronous operation may simply arise naturally from the fact that, per-
haps, different islands take different times to evaluate their individuals and
the system does not wait for the slowest island to reach the synchronization
point. Asynchronous communication between islands may also be the result of
a deliberate algorithmic choice. For example, Munetomo et al. [109] have sug-
gested that the exchange of migrants may be triggered by each subpopulation
by measuring a parameter related to its fitness distribution and phenotypic
diversity.

In these asynchronous algorithms, after a certain time, the different islands
will be working in different generations. To some extent, the situation is sim-
ilar to what happens in steady-state EAs, where the whole population is not
changed at once but rather only a part of it, and successive generations have
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a degree of overlap. Lin et al. [93] have presented a study of the various pos-
sibilities and of their possible advantages and drawbacks.

Asynchronous island models are more difficult to analyze theoretically but
have often been found useful in applications. Examples of asynchronous island
EAs and their empirical characterization will be discussed at the end of the
next chapter.
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Island Models: Empirical Properties

3.1 An Experimental Investigation

In the preceding chapter we have seen how the island model EA is structured
and how it works. Some theoretical results have also been presented. In the
present chapter I shall try to provide empirical evidence for the practical
usefulness of the model.

The island model has been very popular among EA researchers because it
is easy to implement and usually gives satisfactory results. There have been
many empirical investigations and applications, some of which are listed in
the references (see, for instance, [7, 8, 11, 93] and the recent review [5]).

In order to illustrate the main features of island EAs, I shall present here
a rather systematic case study using genetic programming (GP) that origi-
nally appeared in [51] and to which the reader is referred for more details.
Fernández and Vanneschi’s PhD theses also contain a wealth of information
on the topic [39, 150]. Readers unfamiliar with GP might consider consulting
[17] or [89]. The case study will be integrated with an investigation of the
behavior of population diversity, and with a comparison between synchronous
and asynchronous island models.

3.2 Description of the Test Problems

The choice of test problems in an empirical investigation is always a difficult
task. Ideally, one would like to consider many problems of variable difficulty
and belonging to different classes, including real-life problems. However, time
and computational resources are limited. This is why, usually, only a few
problems are included in the benchmark. Genetic programming makes the
situation even worse, since it is in general more time-consuming than other
EAs.

Here I address a set of problems chosen from those that have been classi-
cally used for testing GP: the even-n-parity problem, the symbolic regression



20 3 Island Models: Empirical Properties

problem, and the problem of the artificial ant on the Santa Fe trail, since there
is a large amount of accumulated knowledge on these in the GP community
([89, 92]). Results on real-life problems can be found in [51].

The following is a brief description of the test problems. For more detailed
explanations, see [89].

Even-Parity-4 Problem

The boolean even-parity-k function of k boolean arguments returns true if
an even number of its arguments evaluates to true, otherwise it returns false.
If k = 4, then 16 fitness cases must be checked to evaluate the fitness of an
individual. The fitness is computed as 16 minus the number of hits for the 16
cases. Thus a perfect individual has fitness 0, while the worst individual has
fitness 16. The set of functions is the following: F = {NAND, NOR}. The
terminal set in this problem is composed of four different boolean variables
T = {a, b, c, d}.

Artificial Ant on the Santa Fe Trail

In this problem, an artificial ant is placed on a 32 × 32 toroidal grid. Some
of the cells in the grid contain food pellets. The goal is to find a navigation
strategy for the ant that maximizes its food intake. The same set of functions
and terminals as in [89] was used in the study described here. The fitness
function is the total number of food pellets lying on the trail (89) minus the
amount of food eaten by the ant during its path. This turns the problem into
a minimization one, like the previous one.

Symbolic Regression Problem

The aim here is to find a program which matches a given equation. The classic
polynomial equation f(x) = x4 + x3 + x2 + x is used, and the input set is
composed of the values 0 to 999 (1000 fitness cases). For this problem, the set
of functions used for GP individuals is the following: F={*, //, +, -}, where
// is like / but returns 0 instead of error when the divisor is equal to 0, thus
allowing syntactic closure. The fitness is defined as the sum of the squared
errors at each test point. Again, a lower fitness means a better solution.

3.3 Multipopulation GP Parameters

In all the experiments, the same set of GP parameters was used: generational
GP, crossover rate 95%, mutation rate 0.1%, tournament selection of size
10, ramped half-and-half initialization, maximum depth of individuals for the
creation phase 6, maximum depth of individuals for crossover 17, and elitism
(i.e. survival of the best individual into the newly generated population for
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panmictic populations; the same was done for each subpopulation in the dis-
tributed case). Furthermore, to avoid complicating the issue, I refrained from
using advanced techniques such as ADFs, tailored function sets, and so on.
Only plain GP was used in the experiments.

As already noted, a number of new parameters must be considered in the
island model of parallel, distributed GP:

• the number of populations,
• the number of individuals per population,
• the communication topology,
• the number and type of migrating individuals, and
• the frequency of migration.

The main difficulty faced by the experimenter is that the simultaneous setting
and tuning of all the parameters is a monumental, and probably hopeless,
task. In practice, tuning is done one parameter at a time, which gives less
than optimal results since the parameters are interdependent and interact
in complex ways. However, this is a feasible task, and it allows one at least
to investigate suitable parameter ranges for a series of problems, and the
qualitative ways in which some of the parameters interact with each other.

On the basis of some theoretical results for multipopulation GAs [24], it is
assumed that the number of populations and the number of individuals per
population are more important and are studied first, keeping the other param-
eters fixed at reasonable values on teh basis of previous empirical knowledge.
Once a satisfactory set of values has been obtained for the fundamental pa-
rameters, finding good values for the others becomes possible by means of
extensive simulations.

3.4 Performance Measures and Statistics

For the kind of experiment described here, whose aim is to understand what
are the conditions that make island EAs more efficient than panmictic EAs,
we are not interested so much in obtaining perfect solutions for each problem
by using special parameter settings, special techniques for maximizing perfor-
mance, or special knowledge about the problem. Instead, we are concerned
with the dynamics of evolution and how the convergence process takes place
in the distributed case, as compared to standard GP, over many runs, in or-
der to find statistical regularities and robust and reproducible behavior. To
compare efficiency, we need a performance measure. Usually, the number of
fitness evaluations is an acceptable metric for EAs, since all the other parts
of the algorithm either have negligible complexity or have the same cost for
different runs of the same problem. However, this metric is inadequate for GP,
in which, owing to the variable-length representation, individuals may have
widely different complexities during evolution.
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The data are thus analyzed by means of the effort of computation, which
is defined as the total number of nodes that GP has evaluated in a popu-
lation for a given number of generations. Note that, strictly speaking, one
should take into account the fact that evaluation times may be different for
different operators, but this simplification is still useful as a first approxima-
tion. Clearly, this measure is problem-specific, but it is useful for comparing
different solutions of the same problem.

One last remark about performance evaluation is that it is not my intention
here to compare actual execution times. Island models can be run on several
machines simultaneously, which can provide quite good speedups, since the
communication phases are short with respect to computation. However, as
already noted, I wish to concentrate on the merits of the models themselves
as new kinds of evolutionary algorithms, and not on their time efficiency.

Reporting on performance comparisons in the field of EAs is a notoriously
difficult issue. For problems for which the solution is not known, such as
hard real-life optimization problems, a useful figure of merit is the mean best
fitness (MBF), that is, the average over all runs of the best fitness values
at termination [47]. The very concept of termination is a fuzzy one. Indeed,
in the above situation, one does not know in advance whether the global
optimum has been reached. Consequently, one common approach is to take
the measure after a specified amount of computational effort. For problems
with known solutions, such as those that are studied here, the above measure
is not entirely adequate, because a sizable part of the runs are unsuccessful for
the prescribed effort (using a larger effort would help in some cases but would
become prohibitively expensive). This prevents one from knowing whether
increasing the length of the runs would have been useful and in which cases.
Thus, the measured MBF says little about the problem-solving capabilities of
methods. Instead, when the solution is known, the success rate (SR), defined as
the ratio of successful to the total number of runs for a specified computational
effort, is a good indicator of the algorithmic effectivity [47].

Thus, the main performance indicator used here is the SR. However, to give
a more complete picture of the whole evolutionary process, we also present
mean fitness curves against computational effort, and fitness histograms giving
the relative frequency of the solutions found at a given effort value. The mean
fitness curves are useful for getting a visual feel for the workings of different
algorithms with respect to each other over time. The histograms allow one to
know not only the number of perfect solutions but also how many solutions
were close to optimal, which gives an idea of the “dispersion” of the solutions
at the end of the runs.

From the statistical point of view, a series of runs of a problem may be
considered as a series of independent Bernoulli trials of the same experiment
having only two possible outcomes: success or failure. In this case, the number
of successes (or failures) is binomially distributed and the maximum-likeli-
hood estimator p̂ of the mean of a series of Bernoulli trials, and hence for
the probability of success, is simply the number of successes divided by the
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sample size (the number of runs n). With this information, one can calculate
the sample standard deviation σ =

√
np̂(1 − p̂), which is also given in the

tables.

3.5 Number of Subpopulations and Their Size

In this section two of the parameters affecting the performance multipopula-
tion GP are studied, namely the number of populations and their size. The
interesting limiting case of isolated subpopulations is presented first, and then
communication, and thus migration, is introduced. Numerical experiments,
described in [51], allow one to find suitable population sizes, or rather size
regions, for each test problem such that using larger populations is useless or
even harmful. Using smaller populations, on the other hand, may cause the
search to fail to converge most of the time. Therefore, the number of individ-
uals found in those numerical experiments will be used in what follows.

All the curves that appear in this section are averages over 100 indepen-
dent runs of the same experiments and are labeled by two integers p and
n, where p is the total number of populations and n is the number of indi-
viduals contained in each population. Thus, for example, “1–2500” means a
single population of 2500 individuals (standard GP), while “5–500” means five
populations with 500 individuals per population. The runs have a maximum
length of 500 generations, and the maximum effort in each case was fixed so
as to be achievable within this limit. Here I only show some of the results for
simplicity, and to avoid bothering the reader with too much data and graph-
ics. This should be enough to demonstrate some general lessons. The full data
set is discussed in [51].

3.5.1 Isolated Populations vs. Standard GP

The distinctive aspect of island GP is the exchange of individuals among sub-
populations. A bounding case arises when the populations evolve in isolation.
This bounding case has been analyzed by Cantú-Paz for GAs [24]. A single
population of N individuals can be subdivided into n subpopulations which
run in parallel on m ≤ n machines or sequentially on a single processor be-
cause the runs are independent. The best fitness is obtained by selecting the
best individual from the subpopulations at the end of the runs. Obviously, this
population structure does not require any change to the standard GP algo-
rithm. On the other hand, the number of individuals in each subpopulation is
lower than that used when only one population is employed. Consequently, the
search space region explored by a subpopulation is smaller than that explored
by the whole population. Therefore, the time gains offered by the distributed
system might be offset by an insufficient quality of the evolutionary search.
But if a given number of individuals, say l, happens to be enough for solving
a given problem, larger populations, which need more computational effort,
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represent a waste. A question thus arises: is it better to use several smaller
subpopulations or a larger population with the same total number of individ-
uals? The answer depends on the nature of the search space and on the size
of the populations used for the search.
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Fig. 3.1. The artificial ant problem. Standard GP vs. IMGP. (a) Average fitness
against effort for 1, 2, 5, and 10 populations and a total number of 2500 individuals
over 100 executions. (b) Number of successes in 100 runs for three values of the total
effort. (c) Histogram of the relative frequency of the solutions found by standard GP
for an effort E = 3× 108. (d) Histogram of the relative frequency of the solutions in
the case of 10 populations of 250 individuals each, for the same value of the effort

Artificial Ant Problem

Figure 3.1 shows that, for a total number of individuals equal to 2500, isolated-
multipopulation GP (IMGP) performs better than standard GP, although
the standard deviations on the success rates (Fig. 3.1 b) indicate that the
improvement may be only marginal. IMGP with two, five, or ten populations
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gives the best results, as depicted in the effort curves (Fig. 3.1 a), while using
one single population slightly decreases the performance. The same effect is
apparent in the histograms of the relative frequency of the solutions, where
it can also be seen that even when perfect solutions are not found, better
solutions tend to be discovered in the multipopulation case. With smaller
populations (500 individuals, results not shown here to save space), the general
trend is similar. However, the best average fitness reached with 500 individuals
is worse, as is the number of hits in all cases. This is because the ant problem
is a difficult and deceptive problem for GP (see [92] for an in-depth analysis),
and 500 individuals represent too small a sample for this problem.

Even-Parity-4 Problem

Figure 3.2 illustrates results obtained on the Even-Parity-4 problem with a
population size of 1000 individuals. Even-Parity-4 instead of the more usual
Even-Parity-5 was chosen because the latter is more difficult, requiring larger
populations and more computing time, and its low success rate cannot provide
useful data for statistical analysis. For a total population size of 1000, the
general trend is that isolated populations are more efficient than a single large
population. The standard deviations (Fig. 3.2 b) in the case of the 1–1000 and
10–100 experiments show that the difference in success rate is significant. This
behavior is qualitatively confirmed by the average fitness graphs. It appears
that ten populations of 100 individuals each represent a good choice, while two
populations of 500 individuals perform slightly worse. The histograms of the
relative frequency of the solutions for standard GP and for ten populations
confirm that the number of perfect solutions found in the multipopulation
case is always higher, and even when perfect solutions are not found, the
distributed case tends to find better individuals.

However, results not shown here indicate that there is no clear advantage
for the multipopulation case with a total of 500 individuals, because the sub-
populations become too small, although the distributed case offers the benefit
of a shorter computation time if the runs take place simultaneously.

The number of populations is a crucial issue: we must balance it against
the number of individuals per subpopulation in order to carry out an effective
search and, on the other hand, explore different areas of the search space.

Symbolic Regression Problem

Figure 3.3 depicts results obtained by means of standard GP and with isolated
populations for the symbolic regression problem, for 100 GP runs with a total
population size of 250. The figure shows that isolated populations have a
slight edge, although the effects of distribution have only marginal statistical
significance, as judged by the standard deviations on the success rates (see
Fig. 3.3 b). Moreover, note that the symbolic regression problem used here
(small degree, no adjustable constant coefficients) is easier than either the
ant or the even-parity problem (i.e. a higher number of individuals with a



26 3 Island Models: Empirical Properties

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Effort (x 108)

F
itn

es
s

1−1000
2−500
5−200
10−100

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

Fitness

R
el

at
iv

e 
F

re
qu

en
cy

1−1000

(a) (c)

1 − 1 0 0 0

2 − 5 0 0

5 − 2 0 0

1 0 − 1 0 0

E = 2 .5 x 1 0 8

7 3 (σ = 4 .4 3 9 )

7 0 (σ = 4 .5 8 2 )

7 7 (σ = 4 .2 0 8 )

8 3 (σ = 3 .7 5 6 )

E = 1 .5 x 1 0 8 E = 2 x 1 0 8

7 2

6 8

7 7

8 1

7 1

6 4

7 6

7 6 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

Fitness

R
el

at
iv

e 
F

re
qu

en
cy

10−100

(b) (d)

Fig. 3.2. The even-parity-4 problem. Total population size 1000. Standard GP vs.
IMGP. (a) Average fitness against effort for 1, 2, 5, and 10 populations and a total
number of 1000 individuals over 100 executions. (b) Number of successes in 100
runs for three values of the total effort. (c) Histogram of the relative frequency of
the solutions found by standard GP for an effort E = 2.5×108. (d) Histogram of the
relative frequency of the solutions in the case of 10 populations of 100 individuals
each, for the same value of the effort

perfect fitness is found with less computational effort). The trend continues
with smaller populations, but there is a limit on the number of individuals that
can do a good job. For instance, note how the extreme case of 50 populations
containing only five individuals each shows a degradation in performance in
Fig. 3.3 a. Experiments with a total number of 500 individuals (not reported
here) show the same behavior, except that the multipopulation case is more
favorable. This is probably because 500 is a large population size for this
problem, and dividing the population into several smaller ones still produces
subpopulations that are large enough to allow us to find good solutions; in
other words, a single population of 500 individuals expends more effort than
necessary for obtaining good-quality solutions.
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Fig. 3.3. The symbolic regression problem. Total population size 250. Standard
GP vs. IMGP. (a) Average fitness against effort for 1, 2, and 5 populations and a
total number of 250 individuals over 100 executions. (b) Number of successes in 100
runs for three values of the total effort. (c) Histogram of the relative frequency of
the solutions found in by standard GP for an effort E = 4 × 105. (d) Histogram of
the relative frequency of the solutions in the case of 5 populations of 50 individuals
each, for the same value of the effort. In the histograms, the height of the bar marked
“> 50” is proportional to the number of solutions that are at least 50 units of fitness
worse than the perfect solution

3.5.2 Communicating Islands vs. Standard GP

The isolated-population situation is an interesting limiting case, but one of
the purported advantages of island GP is the possibility of exchanging infor-
mation between the subpopulations. Thus, the next logical step is to introduce
communication, i.e. migration of individuals between demes.

The important point here is, again, the number of subpopulations and their
size. In order to limit the number of free parameters, the other parameters
were chosen as follows:
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• communication topology: random;
• frequency of exchange: every ten generations;
• number of individuals exchanged: 10% of the population size.

These values are not arbitrary: they have been used before in empirical work
with good results and should form an acceptable first approximation. Their
variation is studied later in Sects. 3.6 and 3.7, where it will be seen that this
choice is a reasonable one.

Artificial Ant Problem
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Fig. 3.4. The artificial ant problem. Standard GP vs. island GP with random
communication topology (see text for the other communication parameters). (a)
Average fitness against effort for 1 and 5 populations and a total number of 2500
individuals over 100 executions. (b) Number of successes in 100 runs for three values
of the total effort. (c) Histogram of the relative frequency of the solutions found by
standard GP for an effort E = 3 × 108. (d) Histogram of the relative frequency of
the solutions in the case of 5 populations of 500 individuals each, for the same value
of the effort
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Figure 3.4 clearly shows that five communicating populations of 500 indi-
viduals each are more effective than a single population of 2500 individuals.
In fact, both the curves of average fitness vs. computational effort and the
table of the number of hits show better performance for the distributed case,
as confirmed by the standard deviations; the relative-frequency histograms
show that the distributed case finds solutions of better quality.

The case of five communicating populations can also be compared with
the case of five isolated populations for the same problem (see Fig. 3.1). We
observe that the average fitness curve goes below a value of 4 when communi-
cation is allowed, whereas it only reaches a value near 6 in the isolated case.
Moreover, the number of successes is higher when populations communicate,
and the histogram of the relative frequencies of solutions shows that more
solutions of better quality are found when communication is allowed. The dif-
ferences are significant in the case of island GP vs. standard GP, while they
are not significant for the isolated-population case. This observation refers to
a fixed value of the computational effort, which is the same in both cases.
Clearly, if it were given more generations to run, the isolated case could even-
tually reach the same performance level but the effort would be larger.

Even-Parity-4 Problem

In Fig. 3.5, we can see again that island GP with a random topology performs
significantly better than standard GP for all the population sizes reported
in the figure. In particular, distributing the individuals into ten populations
gives the best results, as is apparent from both the average-fitness curves
and the number-of-hits table. The relative-frequency histograms confirm the
trend, with a higher number of perfect solutions found and a clustering of
good solutions that is shifted toward better fitness values in the distributed
case. The trend favors smaller multiple populations up to a point. However, if
we use too small a population size, the number of islands and the migration
cannot compensate for the loss of search power, as can be seen in Fig. 3.5 for
the extreme case of 50 populations of 10 individuals each, where performance
degrades.

Symbolic Regression Problem

Figure 3.6 depicts the results obtained for the symbolic regression problem
with 250 individuals. Again, we see that distributing the individuals into five
or ten populations is beneficial for this problem, as shown by the number of
successes and the standard deviations. With respect to the analogous isolated-
population case, one can say that the results are almost the same, which can
be explained by the simple nature of the problem. At any rate, the multipop-
ulation case is more favorable than standard GP for both communicating and
isolated populations in this case.

The tables in Fig. 3.7 summarize the differences between standard GP,
isolated-multipopulation GP (IMGP), and communicating-island GP for the
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Fig. 3.5. The even-parity-4 problem. Standard GP vs. island GP with random
communication topology (see text for the other communication parameters). (a)
Average fitness against effort for a total number of 500 individuals over 100 execu-
tions. (b) Number of successes in 100 runs for three values of the total effort. (c)
Histogram of the relative frequency of the solutions found by standard GP for an
effort E = 12 × 107. (d) Histogram of the relative frequency of the solutions in the
case of 10 populations of 50 individuals each, for the same value of the effort

test problems, for some typical population sizes and numbers of subpopula-
tions. One can see that the differences between island GP and standard GP
are always significant, while this is not always the case for IMGP compared
with standard GP. Migration thus offers a significant advantage, at least for
the test problems used here.

3.6 Comparing Communication Topologies

Now we investigate the influence of island communication topology on the
evolutionary process, one of the main themes of this book. The topologies
used here are the ring (or “circle”), the two-dimensional grid, and the random
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Fig. 3.6. The symbolic regression problem. Standard GP vs. island GP with ran-
dom communication topology (see text for the other communication parameters).
(a) average fitness against effort for a total number of 250 individuals over 100 ex-
ecutions. (b) number of successes in 100 runs for three values of the total effort.
(c) histogram of the relative frequency of solutions found by standard GP for an
effort E = 4 × 105. (d) histogram of the relative frequency of the solutions in the
case of 10 populations of 25 individuals each, for the same value of the effort. In the
histograms, the hight of the bar marked “> 50” is proportional to the number of
solutions that are at least 50 units of fitness worse than the perfect solution

topology (see Sect. 3.1). The rings considered are one-way, i.e. messages always
travel from a population to a neighboring one in the same direction. In the
two-dimensional grid, messages are sent from an island to its four south, north,
west, and east nearest neighbors. On the other hand, in the random topology,
the destination population is chosen randomly at run time. All the results
described in this section have been obtained by averaging 100 independent
runs of the same experiment. A total number of individuals equal to 10% of the
total population size was exchanged between populations every 10 generations.
Figure 3.8 shows results for the artificial ant problem in the case of nine
populations of 50 individuals each.
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Fig. 3.7. Summary of the behavior of GP (first data column), IMGP (second col-
umn), and communicating-island GP (third column) for the test problems for some
selected population sizes. The number of successes and their standard deviations are
shown

The graph of fitness against effort shows that the ring and random topolo-
gies achieve better results than does the grid topology. In any case, however,
both the number-of-hits table and the histograms of the relative frequency of
solutions show that the differences between results obtained with the various
topologies used are marginal, a fact that is also confirmed by the standard
deviations on the success rates.

Figure 3.9, showing results for 16 populations of 100 individuals each, con-
firms this trend, with the curves of the circle and random topologies being
even closer, while the grid topology shows the worst performance.

Figure 3.10 depicts results for the even-parity-4 problem in the case of nine
populations of 50 individuals.

Here the grid topology gives the best results, in agreement with the findings
of Andre and Koza [11], although the influence of communication topology on
the evolutionary process appears to be marginal.

In conclusion, at least for the problems studied here, the differences between
the results obtained with the various topologies are narrow, and thus topology
does not seem to be the most important factor in multipopulation GP. On the
other hand, the random and ring topologies possess an advantage in terms of
communication efficiency. In fact, an s-subpopulation ring or random system
sends only s messages at each iteration, whereas an n × n = s grid topology
sends 4 × s messages, all of the same size. When all this considered, using
a random topology seems to be advisable in view of the above results, given
that this topology is easy to implement and seems more natural, as it does
not prescribe a fixed exchange pattern.
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Fig. 3.8. The artificial ant problem. Island GP with three different communication
topologies. (a) Average fitness against effort for 9 populations of 50 individuals each
over 100 executions. (b) Number of successes in 100 runs for three values of the
total effort. (c) Histogram of the relative frequency of the solutions found with a
grid communication topology for an effort E = 10×107. (d) Histogram of the relative
frequency of the solutions for a ring topology for the same value of the effort

These results are not surprising. After all, multipopulation EAs represent
only a relatively small change with respect to a panmictic population: most
of the time, the system evolves as if it were made of a number of independent
mixing populations. The periodic “perturbations” caused by migrants leaving
and entering populations do not fundamentally change the picture.

3.7 Migration Parameters

Up to now, it has been implicitly assumed that the values of the number of
migrants (10% of the island size) and of the frequency of migration (every ten
generations) were suitable. But these are two free parameters of the system,
and they could have been chosen differently. It is true that these parameters
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Fig. 3.9. The artificial ant problem. Island GP with three different communication
topologies. Average fitness against effort for 16 populations of 100 individuals each,
over 100 executions
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Fig. 3.10. The even-parity-4 Problem. Island GP with three different communi-
cation topologies. Average fitness against effort for 9 populations of 50 individuals
each, over 100 executions

were chosen not at random, but rather by an examination of values previously
used with success. It is nevertheless advisable to get at least a feeling for their
influence on the evolutionary process in order to be able to make an educated
guess about this influence.

Let us call the number of individuals that are exchanged between islands
the grain, and the number of generations that elapses between two succes-
sive exchanges of individuals between subpopulations the period. The graphs
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shown in Figs. 3.11 and 3.12 illustrate the fitness level reached as the period
and the grain are varied, after fixing a maximum effort of computation for
each problem. This threshold was fixed at the value of the effort reached after
500 generations. The experiments were run with five populations of 100 indi-
viduals each, for the artificial ant and even-parity problems. The curves are
averages of 100 independent executions of the same experiment.

Even-Parity-4 Problem

Results for this problem are shown in Fig. 3.11, where fitness curves are given
as a function of the grain for a number of values of the period. This figure shows
that the best value of the fitness is reached by the curve representing a period
of 10, for a value of the grain equal to 10. We also note that for low grain values
it is preferable to exchange individuals at each iteration (i.e. period = 1). For
values of the grain from 5 to 20 it is better to exchange individuals every 10
iterations, but a value of the period equal to 5 also gives satisfactory results.
For values of the grain greater than 25, it is better to exchange individuals
less frequently, i.e. each 20 or 25 iterations. This was expected, since too much
mixing of the populations slows down the convergence process.
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Fig. 3.11. The even-parity-4 problem. Fitness as a function of the grain for several
values of the period. Five subpopulations of 100 individuals each, with random
communication topology

Artificial Ant Problem

The averaged results for the ant problem are depicted in Fig. 3.12. This figure
shows that the best value of the fitness is reached by the curves representing
periods of 5 and 10, for a value of the grain equal to 10. We also notice that
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for low values of the grain, it is in general better to exchange individuals at
each iteration (i.e. period = 1). For values of the grain from 5 to 25 it is better
to exchange individuals with a period of 1, 5, or 10 iterations. For values of
the grain greater than 30, exchanging individuals less frequently gives better
results owing to a smaller mixing effect in the subpopulations. However, for
the ant problem, large values of the grain always give worse results.
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Fig. 3.12. The artificial ant problem. Fitness as a function of the grain for several
values of the period. Five subpopulations of 100 individuals each, with random
communication topology

Another work on GP that deals with the influence of the number of individ-
uals exchanged is [11]. The authors of [11] studied the effort of computation
as a function of the grain and found that a grain of 5% of the population
worked best. Other values around 4–8% are also good, thus confirming qual-
itatively the present study. The communication topology used in [11] was
two-dimensional grid instead of a random topology, and the authors of that
work did not study the frequency of migration, since their system used an
asynchronous message-passing pattern.

The results obtained for migration parameters confirm that, on the whole,
the ranges of values that have been empirically chosen over the years are
reasonable. For best results, the number of individuals to be sent to another
population should be about 10% of the population size, and the exchanges
should take place every five to ten generations. The results also make it clear
that if few individuals are exchanged, then it is best for this to be done fre-
quently. In contrast, a large grain should go hand in hand with a low frequency
of exchange, otherwise the genetic material in the populations does not have
time to improve sufficiently from one exchange to the next. But too large
a grain slows down the convergence process, since this brings about a ho-
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mogenization effect that counters the necessary genetic drift of the artificial
evolution. All things considered, frequent exchanges of a few individuals are
to be preferred to infrequent migrations of large blocks.

3.8 Summary of Case Study

This case study sheds some light on the behavior of multipopulation GP. Two
fundamental aspects are the overall size of the working populations and the
number of islands. One can see empirically that, as long as the size of the
subpopulations is above a minimum threshold, a distributed system is more
effective than a single panmictic population of the same total size. This is
true even for the case of isolated islands, but the best results are obtained
when a certain amount of migration is allowed. Obviously, the useful range of
population size is problem-dependent and has to be determined empirically
(but see the previous chapter for some attempts at sizing the populations
based on theoretical principles).

Other, finer aspects of island EAs have also been studied. Concerning the
migration topology, the broad conclusion is that the communication architec-
ture does not have a marked influence on the results. However, the random
topology is at least as good as the ring and the grid, two other widely used
graphs. The number of individuals that migrate and the frequency of migra-
tion are consistently similar across problems, and confirm the range of values
used in previous work.

The considerations above are based on a small number of problems. How-
ever, many other cases showing similar behavior are documented in the liter-
ature (see, for instance, [5] and references therein), especially for island GAs,
giving strength to the empirical conclusions.

Several reasons have been invoked in the literature to justify the undeniable
practical effectiveness of island EAs. Preservation of diversity is one benefit
that is commonly attributed to island and other structured EAs. Another sug-
gested advantage is the possibility of enhancing the explorative characteristics
of the EA owing to the semi-isolation of the populations. Actually, although
these capabilities are potentially available, whether or not they are put to
good use will depend on the type of problem and on the choice of parameters.
To help us get a feel for one of these factors, the next section looks into the
issue of diversity in multipopulation GP.

3.9 The Role of Diversity

Diversity among the individuals in a population plays an important role in
EAs. One of the shortcomings of standard EAs is their inability to maintain
diversity in the population. This lack of diversity can lead to a number of
problems, such as converging to nonglobal optima and not being able to react
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to changes in the environment. Poor diversity is especially troublesome when
one is dealing with multimodal problems or using EAs to solve dynamical
problems.

In genetic programming, the process converges when the elements of the
phenotypic pool are identical or nearly so, in spite of the fact that the geno-
typic pool might still show some syntactical diversity. When this occurs, the
crossover operator ceases to produce new good individuals, and the algorithm
allocates all of its trials in a very small subset of the program space. Un-
fortunately, this often occurs before the true optimum has been found; this
behavior is called premature convergence. The mutation operator provides a
mechanism for reintroducing lost diversity, but it does so at the cost of slowing
down the learning process.

Both genotypic and phenotypic diversity play a role in GP, and the two
are not necessarily correlated in a straightforward manner [23]. In particular,
the phenomenon of “bloat”, the tendency of GP code to grow in size with
generations is well known, and it often gives rise to large nonfunctional por-
tions of the tree that could increase genotypic but not phenotypic diversity,
and cannot increase the capability of the system to produce better solutions
either.

Several “explicit” approaches have been proposed for maintenance of di-
versity within a population. Of these, fitness sharing is the oldest [40], while
multiobjective optimization methods [38] try to preserve diversity by consid-
ering fitness, size, and diversity as simultaneous objectives to be satisfied.
While these methodologies are worthwhile in their own right, here we shall
examine only “implicit” diversity maintenance through the spatial structure
of the population.

3.9.1 Diversity Measures

A good survey and discussion of diversity measures in panmictic GP has been
presented in [23]. Other EA families will need different measures, of course, but
the concepts are the same. For example, in binary-coded GAs, the Hamming
distance is often used. The measures used here are based on the concepts of
entropy and variance, and are employed to evaluate the phenotypic (i.e. based
on fitness) and genotypic (i.e. based on the syntactical structure of individ-
uals) diversity of populations. Phenotypic diversity is related to the number
of different fitness values of the individuals. The corresponding phenotypic
entropy Hp(P ) [121] of a population P is

Hp(P ) = −
N∑

j=1

fj log(fj), (3.1)

where fj is the fraction nj/N of individuals in P having fitness j, and N is
the number of fitness values in P .
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Genotypic entropy can be used to measure genotypic diversity. However, GP
individuals are usually represented as variable-size trees, and a tree distance
measure is needed to define structural differences between trees. One useful
definition of tree distance has been proposed by Ekárt and Németh [48]. The
distance between two trees T1 and T2 is calculated in three steps. (1) T1 and
T2 are overlapped at the root node and the process is applied recursively,
starting from the leftmost subtrees. (2) For each pair of nodes at matching
positions, the difference between their codes (possibly raised to an exponent)
is computed. (3) The differences computed in the previous step are combined
into a weighted sum. Formally, the distance between two trees T1 and T2 with
roots R1 and R2 is defined as follows:

dist(T1, T2) = d(R1, R2) +
1
k

˙m∑
i=1

dist(childi(R1), childi(R2)), (3.2)

where d(R1, R2) = (|c(R1) − c(R2)|)z , childi(Y ) is the ith of the m possible
children of a generic node Y , if i ≤ m, or the empty tree otherwise; and c,
evaluated on the root of an empty tree, is 0. The constant k is used to give
different weights to nodes belonging to different levels, and z is a constant
usually chosen in such a way that z ∈ N .

With this definition of tree distance at hand, we can now define the geno-
typic entropy Hg(P ) of a population P as follows:

Hg(P ) = −
N∑

j=1

gj log(gj), (3.3)

where gj is the fraction of individuals having a given distance from the origin,
which has been chosen arbitrarily as the empty tree.

The variance gives an alternative metric for diversity. The variance of a
population P is defined as follows:

V (P ) =
1

N − 1

N∑
i=1

(xi − x)2. (3.4)

If we are considering phenotypic variance, x is the average fitness f of the
individuals in P , and xi is the fitness fi of the ith individual in P . N is the
total number of individuals in P . The notion of tree distance is used to define
genotypic variance. In this case, x is the average of all the individual distances
from the origin tree, and xi is the distance of the ith individual in P from the
origin tree.
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3.9.2 Experimental Results

This section describes the results related to diversity for the simulations of the
GP test problems described earlier. All the curves represent average values
over 100 independent GP runs.

Artificial Ant Problem
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Fig. 3.13. Artificial ant problem. 1000 total individuals. Thec curves are averages
over 100 runs. (a) Genotypic entropy using structural distance. (b) Genotypic vari-
ance using structural distance. Gray curves: panmictic population. Black curves:
entropy of the aggregated subpopulations

Figure 3.13 a depicts the behavior of the genotypic entropy calculated by
using structural tree distances. The gray curve represents the entropy of one
panmictic population, while the black curve shows the aggregated entropy of
all islands, i.e. the entropy of all the individuals in the islands considered as a
single population. Figure 3.13 b shows the genotypic variance for each gener-
ation. We observe that genotypic diversity, after an initial reorganization (an
increase in the the case of entropy, and a decrease in the case of the variance),
tends to remain constant over time. This is in agreement with the findings
in [23]. The jagged behavior of the multipopulation curves when groups of
individuals are sent and received is not surprising: it is due to the sudden
change in diversity when new individuals enter a subpopulation. If we do not
consider these oscillations, the genotypic diversity of the panmictic popula-
tion and that of the aggregated subpopulations can be considered to be very
similar.

The behavior of the genotypic diversity in individual islands can be seen
in Fig. 3.14, where only two populations are reported to avoid cluttering the
drawing. The general behavior in the islands is similar to that of a single larger
population. However, two effects are visible: first, the diversity of the islands
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is lower and, second, the diversity fluctuations are larger. Both phenomena
are easily understandable if we remember that the population size is smaller
in the individual islands.
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Fig. 3.14. Artificial ant problem. Genotypic entropy (a) and variance (b) using
structural distances, in two subpopulations of 200 individuals each
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Fig. 3.15. Artificial ant problem. 1000 total individuals. Phenotypic entropy (a)
and variance (b). Gray curves: panmictic population. Black curves: entropy of the
aggregated subpopulations

Figure 3.15 shows graphs of the phenotypic entropy and variance for both
the panmictic population and the multipopulation case. It is apparent here
that, unlike the genotypic diversity, the phenotypic diversity tends to decrease
steadily with time, which is in agreement with the results of [23] for panmictic
GP. The same behavior has often been observed in GP runs; see, for instance,
[92]. The interesting remark that we can make is that, even though the average
phenotypic diversity tends to oscillate in the multipopulation case as groups
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of individuals are sent and received, it remains higher globally than in the
panmictic case.

Symbolic Regression Problem
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Fig. 3.16. Symbolic regression problem. 250 total individuals. Genotypic entropy
(a) and variance (b) calculated using structural tree distance. Gray curves: panmictic
population. Black curves: entropy of the aggregated subpopulations

The genotypic entropy and variance obtained with the structural tree dis-
tance are shown in Fig. 3.16. We see that, after an initial transient period,
the genotypic diversity remains approximately constant during the evolution.
Moreover, while the genotypic variance has more or less the same values for the
multipopulation and the panmictic systems, the genotypic entropy is higher
for the single panmictic population. The smaller values of genotypic entropy
in the multiisland system do not seem to affect performance, as we saw in
Sect. 3.5.2.

Figure 3.17 shows the phenotypic diversity (as measured by entropy and
variance) for the multipopulation and the panmictic systems. It appears that,
on average, the phenotypic diversity is higher in the multiisland case. This is
a qualitative confirmation that distribution helps in maintaining phenotypic
diversity. An inspection of Figs. 3.16 and 3.17 suggests that there is little cor-
relation between genotypic and phenotypic diversity (which is in agreement
with [23], and is probably due to bloat, neutral networks in genotypic space,
and nonfunctional code [92]). Moreover, no apparent correlation seems to ex-
ist between the ability of GP to find good-quality solutions and the genotypic
diversity. On the other hand, the capacity of GP to find good-quality solu-
tions seems to be correlated with the phenotypic diversity, at least in these
experiments.
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Fig. 3.17. Symbolic regression problem. 250 total individuals. Phenotypic entropy
(a) and variance (b). Gray curves: panmictic population. Black curves: entropy of
the aggregated subpopulations

Even-Parity-4 Problem

In Fig. 3.18, we observe that a pattern of genotypic diversity similar to that
found for the artificial ant problem (Fig. 3.13) emerges again: the genotypic
diversity changes in the initial part of the evolution: the entropy increases
and the variance decreases, and then levels off and stays practically constant.
For the islands, there are oscillations at migration times, but otherwise the
behavior is quite similar to that of the panmictic system.
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Fig. 3.18. Even-parity-4 problem. 500 total individuals. Genotypic entropy (a)
and variance (b) calculated using the structural distance. Gray curves: panmictic
population. Black curves: entropy of the aggregated subpopulations

Also, for this problem, the phenotypic diversity (the entropy and variance
are shown in Fig. 3.19) always decreases on average during evolution, but it
remains higher for the multipopulation system.
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Fig. 3.19. Even-parity-4 problem. 500 total individuals. Phenotypic entropy (a)
and variance (b). Gray curves: panmictic population. Black curves: entropy of the
aggregated subpopulations

3.9.3 Summary

We have seen how using loosely coupled populations instead of a single pan-
mictic one may help in maintaining diversity during GP runs. By defining
indices of genotypic and phenotypic diversity and by monitoring their varia-
tion over a large number of runs in three standard test problems, it has been
shown experimentally that diversity evolves differently in the multipopula-
tion case. In fact, while genotypic diversity is not much affected by splitting
a single population into multiple ones, phenotypic diversity, which is linked
to fitness, remains higher in the multipopulation case for all problems stud-
ied here. Thus, the low correlation between the evolution of genotypes and
problem-solving behavior is confirmed in the distributed setting [23]. Given
that better convergence properties have been empirically established for dis-
tributed GP in this chapter, it is tempting to attribute this observation to
the behavior of the diversity. Although the data suggest that this could in-
deed be the case, maybe through an implicit control of the bloat phenomenon
(as suggested in [60]), a direct effect cannot be established, only a plausible
indication.

In conclusion, using multiple loosely coupled populations is a natural and
easy way to maintain diversity and, to some extent, avoid premature conver-
gence in GP. Of course, more complicated methods for promoting diversity
(e.g. [38, 48]) may be used in the subpopulations in conjunction with the
natural distribution of the genetic material offered by the latter.

3.10 Asynchronous Island Models

This last section deals with the empirical effect of asynchronous commu-
nications in island-based GP. We have already seen general descriptions of
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asynchronous island models in Sect. 2.4. Here, some experimental results are
reported on the benchmark problems of this chapter for two asynchronous
multipopulation GP models, and are compared with the synchronous island
model and with standard GP (more details can be found in [149]).
Two asynchronous island models were used for these experiments: a model
with a master process that coordinates the individual exchanges, and a model
without a master process. In these models, blocks of migrants are sent syn-
chronously, and are received asynchronously in the destination islands. As we
have seen in Chap. 2, both the sending and receiving could be asynchronous
instead. The synchronous model that the results are compared with is a stan-
dard one, except that, as in the first asynchronous algorithm, it has a special
master process that takes care of receiving blocks of individuals and dispatch-
ing them to the target population. This arrangement containing a master
process is irrelevant from the point of view of the abstract model, except
maybe for fault-tolerance considerations, but it makes it easier to implement
any island interconnection topology.

Asynchronous Communication with Master

The behavior of the populations can be described by the following algorithm:

• Create a random population of programs
• While termination condition not reached do

– Assign a fitness value to each individual
– Select a set of individuals for reproduction
– Recombine and mutate the new population
– If communication has to take place at this iteration then

· Select the best n individuals and send them to the master
· Receive a set of n new individuals from the master
EndIf

– Test the completion of all the pending receives
– For all the terminated receives

· replace the n worst individuals in the population with the n received
individuals

EndFor
EndWhile

At the same time. the master executes the following steps:

• For each iteration in which communication has to take place do
– For each population p do

· Receive a set of n individuals from p
· Send them to another population according to the chosen topology
EndFor

EndFor
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Asynchronous Communication Without Master

In this model each population executes the following steps:

• Create a random population of programs
• While termination condition not reached do

– Assign a fitness value to each individual
– Select a set of individuals for reproduction
– Recombine and mutate the new population;
– If communication has to take place at this iteration then

· Select the best n individuals and send them to another process according
to the chosen topology

· Receive a set of n new individuals from another process according to the
chosen topology with a nonblocking receive operation

EndIf
– Test the completion of all the pending receives
– For all the terminated receives

· replace the n worst individuals in the population with the n received
individuals

EndFor
EndWhile

GP Parameters

In all the experiments performed, the same set of GP parameters was used:
generational GP, crossover rate 95%, mutation rate 0.1%, tournament selec-
tion of size 10, ramped half-and-half initialization, maximum depth of indi-
viduals for the creation phase 6, maximum depth of individuals for crossover
17, no elitism. The subpopulations were connected using a ring topology, and
a number of individuals equal to the 10% of the size of the subpopulation
were exchanged between demes every 10 generations.

The systems were compared with respect to the computational effort spent
to reach a given average solution quality, and the phenotypic entropy, as de-
fined in Sect. 3.9, was used to gauge the diversity in the populations.

3.10.1 Experimental Results

Fitness vs. Computational Effort

Owing to the stochastic nature of the evolutionary process, all the results
shown here were obtained by averaging 60 independent runs of the same ex-
periments. Curves are drawn for the three distributed models and for the
reference standard GP model. In order to assess the statistical significance of
the results, standard deviations of the mean fitness are also presented. Fig-
ures 3.20, 3.21, and 3.22 show graphs of fitness and standard deviation versus
computational effort for the even-parity-5 problem, the artificial ant problem,
and the symbolic regression problem, respectively. The curves for the symbolic
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Fig. 3.20. Fitness and its standard deviation against computational effort for the
even-parity problem. Upper graphs, 5 populations of 300 individuals, lower graphs,
10 populations of 150 individuals. Sequential version (a panmictic population of
1500 individuals) shown in black

regression problem look like straight lines because of the fast convergence of
this easy problem. From these figures, we observe that the distances between
the curves for the distributed models and those for the sequential versions
are always larger than the standard deviations, while this is not the case if
we compare the curves of the parallel models between each other. One can
thus conclude that, for all the cases presented, the island models have a faster
convergence than the panmictic model, while the speeds of convergence of the
synchronous and asynchronous models can be considered statistically equiva-
lent.

Population Phenotypic Entropy

The results for this quantity were obtained by averaging 60 independent runs
of the same experiments. The curves relating to multipopulation models were
obtained by averaging the phenotypic entropies of all the subpopulations at
each iteration. Figures 3.23, 3.24 and 3.25 show the population entropy versus
the generation number for the even-parity-5 problem, the artificial ant prob-
lem, and the symbolic regression problem, respectively. These figures show
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Fig. 3.21. Fitness and its standard deviation against effort for the ant problem.
Upper graphs, 5 populations of 300 individuals, lower graphs, 10 populations of 150
individuals. Sequential version (a panmictic population of 1500 individuals) shown
in black

that the panmictic model has a fast phenotypic entropy increase in the first
few generations and a slow decrease in the rest of the execution. The syn-
chronous model shows a sudden decrease in the entropy each time the gener-
ation number is a multiple of 10 (messages are sent synchronously every ten
generations), and a sudden increase in the immediately following few genera-
tions. This behavior, due to the sudden arrival of new good individuals, was
found earlier in Sect. 3.9.2.

The asynchronous models, on the other hand, show an oscillating behavior,
due to the fact that messages are received whenever they arrive, and not
at fixed times. In all cases, migrating individuals seems to help to alleviate
stagnation in the populations, thus confirming one of the intuitions that are
the basis of distributed evolutionary algorithms.

To summarize the findings of this section, one can say that asynchronous
operation does not cause a marked difference in the behavior of the island
model. Except during the few generations after the reception of new individu-
als in an island, the average behavior is roughly the same for synchronous and
asynchronous multipopulation models. On the other hand, the advantage of
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Fig. 3.22. Fitness and its standard deviation against effort for the symbolic re-
gression problem. Upper graphs, 5 populations of 300 individuals, lower graphs, 10
populations of 150 individuals. Sequential version (a panmictic population of 1500
individuals) shown in black

Fig. 3.23. Phenotypic entropy against generation number for the even-parity-5
problem (5 populations of 300 individuals each). Curves for the sequential version
(a panmictic population of 1500 individuals) are shown too
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Fig. 3.24. Phenotypic entropy against generation number for the artificial ant prob-
lem (5 populations of 300 individuals each). Curves for the sequential version (a
panmictic population of 1500 individuals) are shown too

Fig. 3.25. Population phenotypic entropy against generation number for the sym-
bolic regression problem (5 populations of 300 individuals each). Curves for the
sequential version (a panmictic population of 1500 individuals) are shown too

those models over the panmictic model is once again confirmed with respect to
computational effort, the quality of the solutions found, and overall diversity.

At this point, since we have been using the same few test functions through-
out this chapter, the reader might be led to believe that the empirical evidence
presented in favor of the island model might be limited to those particular
problems and GP. To indicate that this is not the case, it is perhaps useful to
give pointers to a few other experimental investigations with island models,
in addition to those already mentioned in Chap. 2.

Starkweather et al. [143], using a steady-state replacement scheme, showed
that for most of their test functions and for most experimental conditions, a
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ring island topology outperformed a panmictic population of the same total
size. These authors used a migration scheme that swapped migrants between
populations on the ring first between first-neighbor islands, then between
second-neighbors, and so on modulo the ring size.

Andre and Koza [11] used a multipopulation GP system in which the inter-
connection topology was a two-dimensional grid. The send and receive opera-
tions for the migrating individuals were fully asynchronous. Andre and Kota
found that the algorithm was more efficient than a panmictic one on boolean
even-parity functions.

Alba and Troya performed a rather systematic study of structured GAs,
including multipopulation models and their convergence and population di-
versity behavior [8]. Using a completely different set of test functions suited
to GA encoding, they showed that both synchronous and asynchronous is-
lands outperformed the panmictic model. In addition, they found that, in a
physically distributed environment, both showed excellent speedup, with the
asynchronous version being more efficient than the synchronous one owing to
a lower communication overhead.

Many other studies not reported here, including real-life applications, tend
to lead to the same conclusions. In fairness, it should be mentioned that, al-
though there seems to be a general consensus about the advantages offered
by multipopulation EAs, some dissenting voices have been raised for exam-
ple, Punch’s work on multipopulation GP [119]. However, Fernández et al.
have argued in [51] that this apparent discrepancy may be due to insufficient
significance of the statistics.

Finally, I would like to remind the reader that any EA can be improved
by combining it with a problem-specific local search heuristic or with tailored
operators, giving rise to what is known as a hybrid EA. Of course, the same
can be done in the case of island GAs, although I shall not present the cor-
responding kind of algorithm explicitly here. An early example of an island
hybrid EA in the field of function optimization is the work of Mühlenbein et
al. [108], in which a local optimizer is used.
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Lattice Cellular Models

Lattice-structured populations were defined in graph-theoretic terms in Sect.
1.1. This kind of spatially structured EAs was introduced early on in EA re-
search by Gorges-Schleuter, Manderick, and coworkers [70, 96] and has been
used quite often since then. Thanks to the geographical isolation of the in-
dividuals in the population, these populations feature slow diffusion of good
solutions through the lattice, and thus, for a given selection method, their
evolution leads to a more explorative behavior than panmictic EAs. The rea-
sons for this behavior will become clear in this chapter. These aspects have
been found useful for multimodal and other kinds of problems, as we shall see
in the next chapter, where I describe the application of cellular EAs (cEAs)
to a set of test problems.

Lattice cellular EAs represent a more radical departure from the panmictic
population scheme than do the island models that we have studied earlier.
They are thus more useful in understanding the properties of populations in
which locality is a key factor. In this chapter, we turn our attention to the
dynamical properties of these structured populations. As an important case
study, I shall present models for the global, emerging selection pressure in
cEAs. Selection is an extremely important operation in artificial evolution: it
is the process of choosing individuals for reproduction or survival and it thus
provides the driving force in EAs. Another advantage of studying selection in
isolation stems from the difficulties in mathematically modeling the interplay
of selection and variation operators. Our goal is to explain how population
topology influences the behavior of an EA, and this is easier to see when
different effects are first treated separately.

In this chapter we shall also study in depth the influence of the timing of
events on the evolutionary process, a subject that we have encountered already
in connection with island models (see Chap. 2). The influence of asynchronous
operations was seen to be relatively minor there. With cellular populations,
however, we shall see that time matters, and the interplay of time and topo-
logical structure is a very interesting one, with rather important consequences
for the dynamics of evolution.
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The following section gives a brief description of the concept of selection
pressure, or selection intensity1, and the related idea of takeover time.

4.1 Takeover Time

Selection methods are characterized by their takeover time. The takeover time
is the time it takes for a single, best individual to take over the entire popula-
tion. In other words, it represents the speed at which the best solution in the
initial population propagates and conquers the whole population under the
application of the selection operator alone. It can also be seen as a simplified
infective process, in which infection means being replaced by the best individ-
ual and in which infected individuals remain infected forever. The takeover
time can be estimated experimentally by measuring the proportion of the best
individual as a function of time, under the effect of selection only, without
any variation operator. A shorter takeover time indicates a higher selection
pressure, and thus a more exploitative algorithm. If the selection intensity is
lowered, the algorithm becomes more explorative. Selection pressure is thus a
key parameter in the operation of an EA: with high selection pressure, diver-
sity in the population is quickly lost, and the search stagnates, unless a large
population is used or a lot of disruption is caused by the variation operators.
On the other hand, if the selection pressure is weak, convergence slows down
and the search may wander in the problem space without focusing on very
good solutions. An effective search thus requires a careful trade-off between
the selection method, the variation operators, and other EA parameters such
as the population size. We shall see some of these effects in the empirical
studies described in the next chapter.

Theoretical takeover times have been derived by Goldberg and Deb [67] and
by Bäck [14] for panmictic populations and the selection methods used across
the families of EAs. These times turn out to be logarithmic in the population
size, except in the case of proportional selection, which is a factor of n slower,
where n is the population size.

It has been shown empirically in [126] that the selection pressure induced
on the entire population becomes weaker when we move from a panmictic
to a square-grid population of the same size, with synchronous updating of
the cells. A theoretical study of the selection pressure in the case of ring and
array topologies in one-dimensional cEAs has been done by Rudolph [124].
Abstracting from specific selection methods, he splits the selection procedure
into two stages: in the first stage an individual is chosen in the neighborhood of
each individual, and then, in the second stage, for each individual it is decided
whether the other chosen individual will replace it in the next time step. Using
1 Note that we use the term selection intensity here rather informally, to express

the degree of explorative or exploitative character of the algorithm. Selection
intensity is a rigorous concept in population genetics [107].
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only replacement methods in which extinction of the best by chance cannot
happen, i.e. nonextinctive selection, Rudolph derived the expected takeover
times for the two topologies as a function of the population size and the
probability that, in the selection step, the individual with the best fitness is
selected in the neighborhood.

In the rest of this chapter, I shall complete and extend the theoretical results
on selection pressure in lattice-structured cellular EAs, including both syn-
chronous and asynchronous cell update modes, for one- and two-dimensional
grids.

4.2 Synchronous cEAs

We begin with a description of how a standard synchronous cEA works. A
lattice cEA maintains a population whose individuals are spatially distributed
in cells according to a regular lattice structure such as the grid shown in Fig.
4.1. Each cell is occupied by one individual; therefore, the terms cell and
individual may be used interchangeably.

Fig. 4.1. A grid cellular structure with a Moore neighborhood highlighted in gray
around the central black cell

A cEA starts with the cells in a random state and proceeds by successively
updating them using evolutionary operators, until a termination condition
is satisfied. Updating a cell in a cellular EA means selecting parents in the
individual’s neighborhood, applying genetic operators to them, and finally
replacing the individual if the offspring obtained has a better fitness (other
replacement policies can be used). The following is a high-level pseudocode
description of an algorithm for a general cEA:



56 4 Lattice Cellular Models

for each cell i in the grid do in parallel
generate a random individual i

end parallel for
while not termination condition do

for each cell i in the grid do in parallel
Evaluate individual i
Select individual(s) in the neighborhood K(i)
Produce offspring
Evaluate offspring
Assign one of the offspring to cell i according to some criterion

end parallel for
end while

This chema of an algorithm can be specialized for different types of EAs.
For instance, in cellular genetic algorithms (cGAs), two parents might be se-
lected by binary tournament, linear ranking, or fitness-proportionate selection
applied to the (small) selection pool constituted by the cells belonging to the
neighborhood of a given cell, including that cell itself. Recombination might
be done on the selected individuals using a standard crossover technique, fol-
lowed by mutation. However, multiparent techniques have also been proposed
[106]. Finally, replacement of the cell might be done in several ways: the most
common way is for one offspring to replace the cell if it is better, but a proba-
bilistic choice or a policy of always replacing the cell is also common [70, 96].

Gorges-Schleuter gave extensions of the generic cEA to cover evolution
strategies (ES) by using a local-pool form of the classical (λ, µ)-ES selec-
tion, in which, out of λ offspring, µ are chosen to form the next population
[72]. Mutation and, possibly, recombination are the usual ES operators .

The phases of the cEA take place simultaneously for all cells in the lattice.
On truly parallel hardware, this feature can be exploited to speed up the
computation. On a single machine, the virtually parallel update is simulated
by using an extra grid, which keeps the updated cells as they are produced.
This grid will replace the old one at the end of one update phase, or generation.
Remember, however, that here we are not discussing implementation issues,
but only the models. Implementations are discussed in Appendix A.

In the study described here, we consider cEAs defined on a one-dimensional
lattice of size n or a square lattice of size m×m. Both the linear cEA and the
two-dimensional case have periodic boundary conditions, i.e. the structures
are a ring and a torus respectively; the latter is the topological structure
depicted in Fig. 1.6.

Let us denote by S the (finite) set of states that a cell can take up or,
equivalently, the set of different individuals that can occupy a cell at any given
time: this is the set of points in the (discrete) search space of the problem.
Let Ki be the set of neighbors of a given cell i, and let |Ki| = K be its size.
The local transition function φ(·) can then be defined as

φ : SK → S,
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which maps the state si ∈ S of a given cell i into another state from S, as
a function of the states of the K cells in the neighborhood Ki. The implicit
form of the stochastic transition function φ(·) is

φ(·) = P (xi(t + 1) | xj(t) ∈ Ki),

where P is the conditional probability that cell xi will assume a certain value
from the set S at the next time step t+1, given the current (at time t) values
of the states of all the cells in the neighborhood. We are thus dealing with
probabilistic automata, as was pointed out by Tomassini [146] and Whitley
[157], and the set S should be seen as a set of values of a random variable.
The probability P will be a function of the particular selection and variation
methods used.

 Linear 5  Compact 9  Compact 13

Fig. 4.2. Some neighborhoods used in cEA work. From left to right: Linear5, more
commonly known as the von Neumann neighborhood in cellular automata work;
Compact9, also called Moore; and Compact13, a radius-2 von Neumann neighbor-
hood

The main neighborhoods that we consider in this chapter are the radius-1
neighborhood in the linear case, which comprises the cell itself and its first
right and left neighbors and, in the two-dimensional case, the von Neumann
neighborhood, also called Linear 5 (|Ni| = 5), which is constituted by the cen-
tral cell and the four first-neighbor cells in the directions north, east, south,
and west (see Fig. 4.2). Other neighborhood structures are possible, and some-
times used, as depicted in the figure. For the sake of completeness, I should
mention the fact that the neighborhood need not have a regular geometrical
shape; sometimes, irregular neighborhoods have been used in which individ-
uals are selected by performing short random walks around the central cell
[33].

4.3 The Time Dimension: Asynchronous cEAs

Synchronous update, with its idealization of a global clock, is customary in
cEAs and cellular automata, and most results have been obtained using this
model. However, perfect synchronicity is only an abstraction: in physical or
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biological situations, the synchronicity assumption is untenable. In fact, in any
spatially extended system, signals cannot travel faster than light. Hence, for
given dimensions it is impossible for a signal emitted by a global clock to reach
any two computing elements or agents at exactly the same time, which poses
the problem of latching the signal for the units to work in synchronous mode.
Indeed, in biological and sociological environments, agents normally act at
different and possibly uncorrelated times, which seems to preclude a faithful
globally synchronous simulation in most cases of interest (see, for example,
[20] and [80]). Of course, this “unphysicality” is not a problem in artificial
evolutionary algorithms, where we are free to use any solution that makes
sense computationally, even when it is not defendable on biological grounds.
But there are other reasons that make asynchronous cEAs potentially useful
as problem solvers, as we shall see.

In the asynchronous case, cells are updated one at a time in some order.
There are thus many ways for sequentially updating the cells of a cEA, includ-
ing “mixed” ones in which whole blocks of cells are updated asynchronously
with respect to each other, while cells belonging to the block are updated
in parallel [137]. Here I consider four commonly used asynchronous update
methods for cellular automata in which cells are are updated one by one
[128]:

• In fixed line sweep (LS), the n cells are updated sequentially from left to
right for rings, and line by line, starting from the upper left corner cell,
for grids.

• In fixed random sweep (FRS), the next cell to be updated is chosen with
uniform probability without replacement; this will produce a certain up-
date sequence (cj

1, c
k
2 , . . . , cm

n ), where cp
q means that cell number p is up-

dated at time q and (j, k, . . . , m) is a permutation of the n cells. The same
permutation is then used for all update cycles.

• The method of new random sweep (NRS) works like FRS, except that a
new random cell permutation is used for each sweep through the array.

• In uniform choice (UC), the next cell to be updated is chosen at random
with uniform probability and with replacement. This corresponds to a
binomial distribution of the updating probability.

A time step is defined as the process of updating n times sequentially, which
corresponds to updating all the n cells in the grid for LS, FRS, and NRS,
and possibly fewer than n different cells in the uniform-choice method, since
some cells might be updated more than once. Fixed line sweep is a rather
degenerate updating policy, always imposing a one-by-one sequential scan of
the array. In spite of this, it can be useful at times, and is also an interesting
bounding asynchronous case to consider.
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4.4 Models and Their Validation

There have been a number of investigations attempting to characterize the
theoretical properties of cEAs. In [37] Davidor offered a schema propagation
analysis of a two-dimensional cGA with local fitness-proportionate selection
and a probabilistic replacement policy for the offspring. He showed that con-
vergence within a neighborhood is rapid but, thanks to the slow diffusion of
individuals through the grid from neighborhood to neighborhood, there is less
disruption and the risk of premature convergence is lower.

Rudolph and Sprave [125] have shown how cGAs can be modeled by a
probabilistic-automata network and have provided proofs of complete conver-
gence to a global optimum based on Markov chain analysis for a model with
a fitness threshold.

Several results have appeared on selection pressure in cEAs. Spiessens and
Manderick [140] made some early guesses at the form of propagation of the
individuals in a two-dimensional grid under local fitness-proportionate selec-
tion and suggested that the growth should follow a quadratic law. They also
studied the time complexity of the cellular EA.

Sarma and De Jong performed empirical analyses of the dynamical behavior
of cGAs [126, 127], focusing on the effect that the local selection method, and
the size and shape of the neighborhood have on the global induced selection
pressure. Recently, Giacobini et al. have successfully modeled the selection
pressure curves on cEAs in one-dimensional rings and two-dimensional, torus-
shaped grids [61, 62, 63, 65]. Here I shall follow this line of work, and the
reader is referred to the original articles for more details.

In the next section I shall introduce some mathematical background that
is needed in order to understand the models and, for the two-dimensional
case, the approximations that are required to make the models workable.
The models will then be described and validated experimentally. Finally, I
shall offer some more general considerations on the effect of changing the grid
shapes or scaling the neighborhood’s size.

4.5 Mathematical Models

Let us consider the random variables Vi(t) ∈ {0, 1} indicating the presence in
cell i (1 ≤ i ≤ n) of a copy of the best individual (Vi(t) = 1) or of a worse one
(Vi(t) = 0) at time step t, where n is the the population size. The random
variable

N(t) =
n∑

i=1

Vi(t) (4.1)

denotes the number of copies of the best individual in the population at time
step t. Initially Vi(1) = 1 for some individual i, and Vj(1) = 0 for all j �= i.

Following Rudolph’s definition [124], if the selection mechanism is nonex-
tinctive, the expectation E[T ], where T = min{t ≥ 1 : N(t) = n}, is called



60 4 Lattice Cellular Models

the takeover time of the selection method. In the case of spatially structured
populations the quantity Ei[T ], denoting the takeover time if cell i contains
the best individual at time step 1, is termed the takeover time with initial
cell i. Assuming a uniformly distributed initial position of the best individual
over all cells, the takeover time is therefore given by

E[T ] =
1
n

n∑
i=1

Ei[T ]. (4.2)

In the following subsections, recurrences are given that describe the growth
of the random variable N(t) in cEAs with different regular lattice topologies
for the synchronous and the four asynchronous update policies described in
Sect. 4.2. We consider nonextinctive selection mechanisms that select the best
individual in a given neighborhood with a probability in the interval (0, 1].

4.5.1 Limitations of Logistic Modeling

It has been well known since the work of Verhulst[152] in the 19th century,
that the assumption of logistic growth is a reasonable model for biological
populations with bounded resources [110]. It is easy to see that this behavior
also holds for the growth of the best individual in the artificial evolution of
a finite panmictic population [67]. In fact, if we consider a population of size
n, the number N(t) of copies of the best individual in the population at time
step t is given by the following recurrence:{

N(0) = 1,
N(t) = N(t − 1) + psN(t − 1)(n − N(t − 1))

where ps is the probability that the best individual is chosen. This recurrence
can be easily transformed into one that describes a discrete logistic population
growth in discrete time:{

N(0) = 1,
N(t) = N(t − 1) + psnN(t − 1) (1 − (1/n)N(t − 1)) .

Such a recurrence can be approximated in analytic form by the standard
continuous logistic equation2:

N(t) =
n

1 + (n/N(0) − 1) e−αt
,

where the growth coefficient α depends on the probability ps. This is the
approach taken in [127] for synchronous cEAs in order to fit the measured
growth curves as a function of a single structural parameter.
2 Note that this is not true in a rigorous sense. The discrete logistic map can give

rise to chaotic behavior for a range of the parameters [110]. This is ignored in the
qualitative discussion above.
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This can be useful as a first approximation, but, as suggested by Gorges-
Schleuter and Spiessens and Manderick [72, 140], in the artificial evolution of
locally interacting, spatially structured populations, the assumption of logistic
growth does not hold anymore. Instead, in these locally interacting structures,
although the curves have the familiar “S shape” denoting growth followed by
saturation, they are not exponential but rather are polynomial, with a time
dependence ∝ td, where d is the lattice dimension.

In fact, in the case of a ring or a torus structure we have a linear or a sub-
quadratic growth, respectively. We complete here Gorges-Schleuter’s analysis,
which holds for unrestricted growth, extending it to bounded synchronously
updated spatial populations.

For a structured population, let us consider the limiting case, which repre-
sents an upper bound on the growth rate, in which the selection mechanism is
deterministic (i.e. where ps = 1), and a cell always chooses its best neighbor
for updating. If we consider a population of size n with a ring structure, and
consider a neighborhood radius of r (i.e. the neighborhood of a cell contains
2r + 1 cells), the following recurrence describes the growth of the number of
copies of the best individual:{

N(0) = 1,
N(t) = N(t − 1) + 2r.

This recurrence can be described by the closed equation N(t) = 1+2rt, which
clearly shows the linear character of the growth rate.

In the case of a population of size n on a toroidal grid of size
√

n × √
n

(assuming
√

n odd) and a von Neumann generalized neighborhood structure
of radius r (see Sect. 4.8), the growth of the number of copies of the best
individual can be described by the following recurrence:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N(0) = 1,

N(t) = N(t − 1) + 4
r−1∑
i=0

(rt − i) , 0 ≤ t ≤ (
√

n − 1)/2,

N(t) = N(t − 1) + 4
r−1∑
i=0

(
√

n − rt − i) , t ≥ (
√

n − 1)/2.

which reduces to the following:

⎧⎨
⎩

N(0) = 1,
N(t) = N(t − 1) + 4r2t − 2r(r + 1) , 0 ≤ t ≤ (

√
n − 1)/2,

N(t) = N(t − 1) − 4r2t + 4r
√

n − 2r(r + 1) , t ≥ (
√

n − 1)/2.

This growth is described by a convex quadratic equation followed by a
concave one, as the two closed forms of the recurrence clearly show:
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N(t) = 2r2t2 + 2r(2r + 1)t + 1 , 0 ≤ t ≤ (

√
n − 1)/2,

N(t) = −2r2t2 + 2r(2
√

n − 3r − 1)t + 1 , t ≥ (
√

n − 1)/2.

Figure 4.3 depicts graphically the growth described by the above equations
for a population of 81 individuals on a 9 × 9 torus structure using a radius-1
von Neumann neighborhood.

Fig. 4.3. Example of deterministic growth of N(t) for a population of 81 individuals
on a 9 × 9 torus structure with a von Neumann neighborhood

Thus, a more accurate fit should take into account the nonexponential
growth followed by saturation (the crowding effect). We address such studies
in the following sections for the cases of one- and two-dimensional regular
lattice topologies with synchronous and asynchronous evolution.

4.5.2 The Ring Structure

In a linear cEA, the cells are arranged along a line. Depending on whether
the last and first individuals communicate or not, we have a ring or a linear
topology, respectively. Here we assume the first case (ring), which is more
common. Each cell has the same number of neighbors on both sides, and this
number depends on the radius r. We shall consider first the simplest case,
r = 1, which means that there are three neighbors, including the central cell
itself.

At each time step t, the expected number of copies N(t) of the best indi-
vidual is independent of its initial position. Therefore, the expected takeover
time is E[T ] = Ei[T ], ∀i.

Synchronous Takeover Time

Since we are assuming neighborhoods of radius 1 and N(0) = 1, the set of cells
containing a copy of the best individual will always be a connected region of
the ring. Therefore, at each time step, only two more cells (the two adjacent
to the connected region of the ring) will contain a copy of the best individual,
with probability p. The growth of the quantity N(t) can be described by the
following recurrence:⎧⎪⎨

⎪⎩
N(0) = 1,

E[N(t)] =
n∑

j=1

P [N(t − 1) = j](j + 2p),
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where P [N(t−1) = j] is the probability that the random variable N takes the
value j at time step t− 1. Since

∑n
j=1 P [N(t− 1) = j] = 1, and the expected

number E[N(t − 1)] of copies of the best individual at time step t − 1 is by
definition

∑n
j=1 P [N(t − 1) = j]j, the above recurrence is equivalent to{

N(0) = 1,
E[N(t)] = E[N(t − 1)] + 2p.

The closed form of this recurrence is trivially E[N(t)] = 2pt+1, and therefore
the expected takeover time E[T ] for a synchronous ring cEA with n cells is

E[T ] =
1
2p

(n − 1).

Rudolph [124] gave analytical results for a ring with synchronous update for
a generic probability of selection p. Although obtained in a different way, the
expression above and his equation give nearly the same results for large pop-
ulation sizes n. In fact, his equation, for large n, reduces to n/2p− 1/4, while
the equation above gives n/2p− 1/2p. Since the first term quickly dominates
over the second for large n, the two expressions can be considered equivalent.

Asynchronous Fixed-Line-Sweep Takeover Time

Let us consider the general case of an asynchronous fixed-line-sweep cEA, in
which the connected region containing the copies of the best individual at
time step t is B(t) = {l, . . . , k}, 1 < l ≤ k < n. At each time step the cell l−1
will contain a copy of the best individual with probability p, while the cells
k + j (with j = 1, . . . , n − k) will contain a copy of the best individual with
probability pj . The recurrence describing the growth of the random variable
N(t) is therefore⎧⎪⎨

⎪⎩
N(0) = 1,

E[N(t)] =
n∑

j=1

P [N(t − 1) = j]

(
j + p +

n−j∑
i=1

pi

)
.

Since
∑n−j

i=1 pi is a geometric progression, we can approximate this quantity
for large n by the limit value p/(1−p) of the sum. The recurrence is therefore
equivalent to the following one:

{
N(0) = 1,
E[N(t)] = E[N(t − 1)] + p + p/(1 − p) = E[N(t − 1)] + (2p − p2)/(1 − p).

Since the closed form of the recurrence above is

E[N(t)] =
2p − p2

1 − p
t + 1,
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we conclude that the takeover time for an asynchronous fixed-line-sweep cEA
with a population of size n is

E[T ] =
1 − p

2p − p2
(n − 1).

Asynchronous Fixed- and New-Random-Sweep Takeover Times

The mean behaviors of the asynchronous fixed-random-sweep and new-
random-sweep update policies over all the possible permutations of the sweeps
are equivalent. I therefore give only one model, describing the growth of the
random variable N(t) for both policies.

Let us consider again the general case in which the connected region con-
taining the copies of the best individual at time step t is B(t) = {l, . . . , k}
(with 1 < l ≤ k < n). The cells l − 1 and k + 1 have a probability p of
containing a copy of the best individual at the next time step. For symmetry
reasons, let us consider only the part of the ring at the right-hand side of the
connected region. The cell k + 2 has a probability 1/2 of being contained in
the set of cells after cell k + 1 in the sweep, so it has a probability (p/2)p of
containing a copy of the best individual in the next time step. In general, a
cell k + j + 1 has a probability 1/2 of coming after cell k + j in the sweep,
so it has a probability (p/2)jp to contain a copy of the best individual in the
next time step. The recurrence describing the growth of the random variable
N(t) is therefore⎧⎪⎨

⎪⎩
N(0) = 1,

E[N(t)] =
n∑

j=1

P [N(t − 1) = j]

(
j + 2

n−j∑
i=1

p
(p

2

)i−1
)

,

which can be transformed into the recurrence⎧⎪⎨
⎪⎩

N(0) = 1,

E[N(t)] =
n∑

j=1

P [N(t − 1) = j]

(
j + 4

n−j∑
i=1

(p

2

)i
)

.

Since
∑n−j

i=1 (p/2)i is a geometric progression, we can approximate this quan-
tity for large n by the limit value p/(2− p) of the sum. The recurrence is thus
equivalent to the following one:{

N(0) = 1,
E[N(t)] = E[N(t − 1)] + 4p/(2 − p).

The closed form of the recurrence above is

E[N(k)] =
4p

2 − p
k + 1,
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and we conclude that the expected takeover time for a fixed- (or new-) random-
sweep asynchronous cEA with a population of size n is

E[T ] =
2 − p

4p
(n − 1).

Asynchronous Uniform-Choice Takeover Time

To model the takeover time for asynchronous uniform-choice cEAs, it is prefer-
able to use cell update steps u instead of time steps in the recurrences. As
in the case of the other update policies, the region containing the copies
of the best individual at update step u is a connected part of the ring
B(u) = {l, . . . , k} (with 1 < l ≤ k < n). At each update step the two cells
l − 1 and k + 1 have a probability 1/n of being selected, and each cell has a
probability p, if selected, of containing a copy of the best individual after the
selection and replacement phases. The recurrence describing the growth of the
random variable N(u) counting the number of copies of the best individual
at update step u thus becomes⎧⎪⎨

⎪⎩
N(0) = 1,

E[N(u)] =
n∑

j=1

P [N(u − 1) = j]
(

j + 2
1
n

p

)
,

which can be transformed into{
N(0) = 1,
E[N(u)] = E[N(u − 1)] + 2p/n.

We can easily derive the closed form of the above recurrence

E[N(u)] =
2
n

pu + 1.

Since a time step is defined as n update steps, where n is the population size,
the expected takeover time for a uniform choice asynchronous cEA is

E[T ] =
1
2p

(n − 1).

We notice that the expected takeover time for a uniform-choice asynchronous
cEA is equal to the expected takeover time for a synchronous cEA.

It should be noted also that the present asynchronous uniform-choice update
model is very similar to what goes under the name of nonlinear voter model
in the probability literature [43].
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4.5.3 The Torus Structure

We consider cEAs defined on a square lattice of finite size
√

n × √
n. The

neighborhood is the von Neumann neighborhood, which is constituted by a
central cell plus the four first-neighbor cells in the directions north, east, south,
and west (see Figs. 4.1 and 4.2).

Because of the wrapping properties of the torus, at each time step t the
expected number of copies N(t) of the best individual is independent of its
initial position. Therefore, the expected takeover time is E[T ] = Ei[T ], ∀i.

We have seen in Sect. 4.5.1 the limiting case of growth with deterministic
selection (i.e. a mechanism that selects the best individual in the neighbor-
hood with probability p = 1). In that case, the time variable t in the equations
determines the half-diagonal of a square rotated by 45◦ (see Fig. 4.3). When a
probabilistic selection method is modeled, the exact recurrences, correspond-
ing to those derived for the ring topology in the previous subsection, become
very complicated. In fact, as can be seen in Fig. 4.4, the phenomenon that has
to be modeled implies different selection probabilities at different locations in
the grid.

Fig. 4.4. Example of growth of N(t) with probabilistic selection for a population
of 81 individuals on a 9 × 9 torus structure

To keep the models simple and easily interpretable, the geometry of the
propagation is approximated as the growth of a rotated square in the torus
(see Fig. 4.5). Using this geometric growth, the side length s and the half-
diagonal d of the rotated square can be approximated by

s =
√

N(t), d =

√
N(t)√

2
.

Fig. 4.5. Geometric approximation of growth with probabilistic selection in a torus-
structured population: a rotated square grows as a function of time; there is unre-
stricted growth until the square reaches the edges of the grid, and then the popula-
tion saturates
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With these quantities, we shall now focus on synchronous and asynchronous
takeover times, using the relevant probabilities in each case.

Synchronous Takeover Time

Let us consider the growth of such a region with a selection mechanism that
has probabilities p1, p2, p3, p4, and p5 of selecting the best individual when
there are respectively 1, 2, 3, 4 and 5 copies of it in the neighborhood. As-
suming that the region containing the copies of the best individual expands
such that it maintains the shape of a square rotated by 45◦, we can model the
growth of N(t) with the following recurrence⎧⎨

⎩
N(0) = 1,

N(t) = N(t − 1) + 4p2

√
N(t − 1)/

√
2 , N(t) ≤ n/2,

N(t) = N(t − 1) + 4p2

√
n − N(t − 1) , N(t) > n/2.

It is extremely difficult to find a closed analytic form of this recurrence, as
is also the case for the asynchronous models considered next. Therefore, only
the explicit recurrences will be given in each case.

Asynchronous Fixed-Line-Sweep Takeover Time

This update method, which is meaningful in a ring topology, can be criticized
in the case of a toroidal topology. In fact, there is no biological parallel for
this update mechanism. A precise model for such an update would be very
complicated, since it is difficult to approximate the shape of the region con-
taining the copies of the best individual. In order to keep the model simple
and understandable, the shape of the growing region is approximated here by
a square stretched in the southeast direction, growing with probability p1 on
the northeast side, p2 on the southeast side, and p1 in the southerly direction.

Let us suppose that in any line the cells containing a copy of the best
individual at time step t have indices l to k. In the next time step, the cell
l − 1 will contain a copy of the best individual with probability p, while the
cells k + j (with j = 1, . . . , n − s) will contain a copy of the best individual
with probability pj. The number of copies of the best individual in the line in
the next time step is

p +

√
n−j∑

i=1

pi.

For large n, we can approximate this quantity by the limit (2p− p2)/(1 − p).
Therefore, we can model the growth of N(t) with the following recurrence
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⎪⎪⎪⎪⎩

N(0) = 1,

N(t) = N(t − 1) +
(
(2p2 − p2

2)/(1 − p2) + 2(2p1 − p2
1)/(1 − p1)

) √
N(t − 1),

N(t) ≤ n/2,
N(t) = N(t − 1) +

(
(2p2 − p2

2)/(1 − p2) + 2(2p1 − p2
1)/(1 − p1)

)√
n − N(t − 1), N(t) > n/2.

Asynchronous Fixed- and New-Random-Sweep Takeover Time

The behaviors of fixed random sweep and new random sweep averaged over
all the possible permutations of the individuals on the grid are equivalent in
the toroidal case also. Thus, only one model is needed to describe the growth
of the random variable N(t) for both policies.

In any one time step, the probability of one individual on the border of the
region being taken over by the best is p2, while an individual at distance 2
from the region can be replaced by the best with probability (details can be
found in [65])

p2p1 +
1
4
(p2 − 2p1)p2

2.

It is sufficient to model the growth up to distance 2 because, as can been
seen in Fig. 4.6, the probability at distances ≥ 3 becomes negligible.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4.6. Probability of an individual being replaced by a copy of the best individual
(y axis) as a function of the distance (x axis) from the region formed by copies of the
best, for asynchronous fixed (and new) random sweep. Note that the curve is traced
continuously for clarity but the probability is calculated only at discrete points
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Thus, we can model the growth of N(t) with the following recurrence:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N(0) = 1,

N(t) = N(t − 1) + 4
(
p2p1 + 1

4 (p2 − 2p1)p2
2

)
(
√

N(t − 1) − 1) + 4p1,
N(t) ≤ n/2,

N(t) = N(t − 1) + 4
(
p2p1 + 1

4 (p2 − 2p1)p2
2

)
(
√

n − N(t − 1) − 1) + 8p3,
N(t) > n/2.

Asynchronous Uniform-Choice Takeover Time

The ways in which an individual can be replaced in a time step in this case
are the same as for fixed and new random sweep (see above). In the present
case, the average probability of an individual coming before another in a time
step is 1/n; therefore, an individual at distance 2 from the region is replaced
with probability

1
n

p2p1 +
1
n2

(p2 − 2p1)p2
2.

The probability is already very small at distance 2 (see Fig. 4.7). Thus, only
individuals at distance 1 from the region are considered.

1 2 3 4 5 6 7 8
0
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0.4
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0.6

0.7

Fig. 4.7. Probability of an individual being replaced by a copy of the best individual
(y axis) as a function of the distance (x axis) from the region formed by copies of
the best for uniform choice. Note that the curve is traced continuously for clarity
but the probability is calculated only at discrete points

In terms of time steps, the growth of N(t) can be modeled with the following
recurrence:

⎧⎨
⎩

N(0) = 1,

N(t) = N(t − 1) + 4p2

√
N(t − 1) , N(t) ≤ n/2,

N(t) = N(t − 1) + 4p2(
√

n − N(t − 1) − 1) + 8p3 , N(t) > n/2
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4.6 Experimental Validation

In this section, a set of validation tests to evaluate the accuracy of the math-
ematical models in the previous sections are presented. Since cEAs are good
candidates for using selection methods that are easily extensible to small local
pools, we have used binary tournament and linear ranking in the experiments.
Fitness-proportionate selection could also be used, but it suffers from stochas-
tic errors in small populations (e.g. at a neighborhood level), and it is more
difficult to model theoretically, since it requires knowledge of the fitness dis-
tribution function.

The binary tournament selection mechanism is the same as the one de-
scribed by Rudolph [124]: two individuals are randomly chosen with replace-
ment in the neighborhood of a given cell, and the one with the better fitness
is selected for the replacement phase.

In linear ranking selection the individuals in the neighborhood of a given cell
are ranked according to their fitness: each individual then has a probability
2(s− i)/(s(s− 1)) of being selected for the replacement phase, where s is the
number of cells in the neighborhood and i is its rank in the neighborhood.

4.6.1 Ring Structure

For the study described here, the cEA structure has a ring topology of size
1024 with neighborhood of radius 1. Only the selection operator is active: for
each cell, it selects one individual in the neighborhood of the cell (the cell and
its two adjacent right and left neighbors). The selected individual replaces the
old individual only if it has a better fitness.

Binary Tournament Selection

Figure 4.8 shows the experimental growth curves of the best individual for the
synchronous and four asynchronous update methods. We may notice that the
mean curves for the two asynchronous methods fixed and new random sweep
show a very similar behavior. The graph also shows that the asynchronous
update methods give an emergent selection pressure greater than or equal to
that in the synchronous case, increasing from the case of uniform choice to
that of line sweep, with fixed and new random sweep in between.

The numerical values of the mean takeover times for the five update meth-
ods, along with their standard deviations, are shown in Table 4.1, where it can
be seen that the fixed-random-sweep and new-random-sweep methods give re-
sults that are statistically indistinguishable, and can therefore be described
by a single model, as we assumed in Sect. 4.5.2. The same can be said for the
synchronous and uniform-choice methods, as our models predicted.

Since the neighborhood has radius 1, at most one individual with the best
fitness will be present in the neighborhood of any cell under consideration,
except for the last update, when there are two of them. It turns out that
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Fig. 4.8. Takeover times with binary tournament selection: mean values over 100
runs. The vertical axis represents the number of copies N(t) of the best individual
in each population as a function of the time step t

Synchro LS FRS NRS UC

Mean takeover time 925.03 569.82 666.18 689.29 920.04
Standard deviation 20.36 24.85 17.38 20.27 26.68

Table 4.1. Mean actual takeover time and standard deviation for tournament se-
lection and the five update methods. Mean values over 100 independent runs

the probability for an individual that has a copy of the best individual in its
neighborhood being selected is p = 5/9. Using this probability in the models
described in Sect. 4.1, theoretical growth curves can be calculated. Figure 4.9
shows the predicted and experimental curves for the five update methods, and
the mean square error between them.

Looking at the curves, it is clear that the models faithfully predict the ob-
served takeover times. Moreover, the equivalence between new random sweep
and fixed random sweep, as well as that between synchronous and uniform
choice, is fully confirmed.

Linear Ranking Selection

Figure 4.10 shows the experimental growth curves of the best individual for
the synchronous and four asynchronous update methods. We can observe in
the linear ranking case the same behavior as that which previously emerged
in the binary tournament case: the mean curves for the cases of synchronous
and asynchronous uniform choice are superposed, and the mean curves for
the two asynchronous methods for fixed and new random sweep show very
similar behavior. The graph shows that the asynchronous update methods
give a greater emergent selection pressure than do the synchronous methods,
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Fig. 4.9. Comparison of the experimental takeover time curves (full lines) with the
model (dashed) in the case of binary tournament selection for four update methods:
synchronous (a), asynchronous line sweep (b), asynchronous fixed random sweep
(c), and asynchronous new random sweep (d). Asynchronous uniform choice gives
the same curve as does synchronous update, and therefore the corresponding curve
has been omitted. In each graph, the mean square error between the predicted and
experimental curves is shown

increasing from the case of uniform choice to that of line sweep, with fixed
and new random sweep in between.

The numerical values of the mean takeover times for the five update meth-
ods, along with their standard deviations, are shown in Table 4.2. Again, the
results show that the two random-sweep methods are statistically equivalent,
which is also the case for the synchronous and uniform-choice methods.

Synchro LS FRS NRS UC

Mean takeover time 768.04 387.09 519.92 541.14 766.5
Standard deviation 17.62 19.21 14.26 14.48 25.44

Table 4.2. Mean takeover time and standard deviation for linear ranking selection
and the five update methods. Mean values over 100 independent runs
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Fig. 4.10. Takeover times with linear ranking selection: mean values over 100 runs.
The vertical axis represents the number of copies N(t) of the best individual in each
population as a function of the time step t

With this linear ranking selection method, a cell that has a copy of the best
individual in its neighborhood has a probability p = 2/3 of selecting it. Using
this value in the models described in Sect. 4.1, theoretical growth curves can
be calculated. Figure 4.11 shows the predicted and experimental curves for
the five update methods, and the mean square error between them. As can
be seen, the agreement between theory and experiment is excellent.

4.6.2 Torus Structure

This section describes the validation of the models for the torus shape. The
cEA structure used has a torus topology of size 32× 32 with a von Neumann
neighborhood. Only the selection operator is active: for each cell, it selects one
individual in the neighborhood of the cell, and the selected individual replaces
the old individual only if it has a better fitness. Results are presented for the
two selection methods of binary tournament and linear ranking.

Binary Tournament Selection

Figure 4.12 shows the growth curves of the best individual for the panmictic,
synchronous, and three asynchronous update methods. The mean curves for
the two asynchronous methods, i. e. fixed and new random sweep, show a very
similar behavior, and thus only the results for new random sweep are plotted.
The graph shows that the asynchronous update methods give an emergent
selection pressure greater than in the synchronous case, increasing from the
case of uniform choice to that of line sweep, with fixed and new random sweep
in between (similarly to our findings for the ring topology).

The numerical values of the mean takeover times for the five update meth-
ods, together with their standard deviations, are shown in Table 4.3, where
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Fig. 4.11. Comparison of experimental takeover time curves (full lines) with the
model (dashed) in the case of linear ranking selection for four update methods:
synchronous (a), asynchronous line sweep (b), asynchronous fixed random sweep
(c), and asynchronous new random sweep (d). Asynchronous uniform choice gives
the same curve as does synchronous update, and therefore the corresponding curve
has been omitted. In each graph, the mean square error between the predicted and
experimental curves is shown

it can be seen that the fixed-random-sweep, and new-random-sweep methods
give results that are statistically indistinguishable. However, this time the dif-
ferences between the uniform-choice and synchronous update are meaningful
in the case of torus.

Synchro LS FRS NRS UC

Mean takeover time 44.06 21.8 27.21 28.26 35.73
Standard deviation 1.6746 1.7581 1.5654 1.8996 2.4489

Table 4.3. Mean takeover time and standard deviation for the binary tournament
selection and the five update methods. Mean values over 100 independent runs
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Fig. 4.12. Takeover times with binary tournament selection. Mean values over
100 runs. The vertical axis represents the fraction of the best individual in each
population as a function of the time step t

Since a von Neumann neighborhood is used, the probabilities p1, p2 and
p3 of selecting the best individual when there are 1, 2, and 3 copies of it
in the neighborhood are 9/25, 16/25, and 21/25, respectively. Using these
probabilities theoretical growth curves can be calculated from the growth
equations. Figure 4.13 shows the predicted and experimental curves for the
five update methods. It can be observed that the agreement between theory
and experiment is very good, in spite of the approximations made in the
models.

Linear Ranking Selection

Figure 4.14 shows the growth curves of the best individual for the panmic-
tic, synchronous, and three asynchronous update methods for linear ranking
selection. We can observe the same phenomenon as that which emerged in
the binary tournament case: the average curves for the two asynchronous up-
date methods of fixed and new random sweep show very similar behavior.
Thus, only the results for new random sweep are plotted. The graph shows
that the asynchronous update methods give an emergent selection pressure
greater than that for the synchronous method, increasing from the case of
uniform choice to that of line sweep, with fixed random sweep in between.
The numerical values of the mean takeover times for the five update methods,
together with their standard deviations, are shown in Table 4.4. Again, the
results show that the two random-sweep methods are statistically equivalent,
while the uniform-choice and synchronous methods are not.

For a von Neumann neighborhood, the probabilities p1, p2, and p3 of se-
lecting the best individual when there are 1, 2, and 3 copies of it in the
neighborhood are 2/5, 7/10 and 9/10, respectively. Theoretical growth curves
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Fig. 4.13. Comparison of experimental takeover time curves (full line) with the
model (dashed) in the case of binary tournament selection for four update methods:
synchronous (a), asynchronous line sweep (b), asynchronous fixed random sweep (c),
and uniform choice (d)

Synchro LS FRS NRS UC

Mean takeover time 40.68 18.2 23.96 24.89 32.16
Standard deviation 1.2703 1.633 1.4766 1.4626 2.3856

Table 4.4. Mean takeover time and standard deviation for linear ranking selection
and the five update methods. Mean values over 100 independent runs

can be calculated using these probability values in the models. Figure 4.15
shows the predicted and experimental curves for the five update methods.
The agreement between theory and experiment can be considered very good.

4.7 Rectangular Toroidal Structures

It has been shown in the literature [4, 6, 41] that varying the ratio of the
grid axes in a two-dimensional cEA is another simple way to control the
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Fig. 4.14. Takeover times with linear ranking. Mean values over 100 runs. The
vertical axis represents the fraction of the best individual in each population as a
function of the time step t

global selection pressure. In this section, we address the prediction of takeover
regimes for cEAs whose population shape is toroidal but not square. Since
different kinds of rectangular shapes could be used in a toroidal cEA, I present
the model’s behavior when this variation is taken into account.

Let us suppose a rectangular toroidal structure of size a× b, with a ≥ b; the
same geometrical approximation used in the case of a square toroidal structure
(see Fig. 4.5) can be applied in this case. This time, the models will describe
the growth of a rotated square until its area is equal to b2/2, followed by a
composition of b linear growths until the area of the region is ab − b2/4, and
then a final quadratic saturation (see Fig. 4.16).

The recurrences modeling the synchronous and the three asynchronous evo-
lutions will therefore be made up of the initial condition (N(0) = 1), followed
by the equation describing the unrestricted growth of the square (until N(t) =
b2/2), then the composition of b linear growths (until N(t) = ab − b2/4), and
finally the saturation equation. Since the expressions are rather cumbersome,
only the final recurrence for the synchronous case is given here. The interested
reader can find the detailed derivations, including the asynchronous cases, in
[65].

For synchronous evolution the recurrence is⎧⎪⎪⎨
⎪⎪⎩

N(0) = 1,

N(t) = N(t − 1) + 4p2(
√

N(t − 1)/
√

2),
N(t) = N(t − 1) + 2(b − 1)p2 + p1,

N(t) = N(t − 1) + 4p2

√
n − N(t − 1).
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Fig. 4.15. Comparison of experimental takeover time curves (full lines) with the
model (dashed) in the case of linear ranking selection for four update methods:
synchronous (a), asynchronous line sweep (b), asynchronous fixed random sweep
(c), and uniform choice (d)

Fig. 4.16. Geometric approximation of growth with probabilistic selection in a
rectangular toroidal structured population

4.7.1 Validation of the Rectangular Toroidal Models

The cEA structures used for this purpose had rectangular torus topologies of
sizes 64×16 and 128×8 with a radius-1 von Neumann neighborhood. The cEA
was run for the two topologies as in the previous experiments, using binary
tournament and the linear ranking selection. The results (summarized in Table
4.5 for binary tournament and in Table 4.6 for linear ranking selection) show
similar behavior to the ring and torus topologies. In fact, the longest takeover
time always corresponds to a synchronous update, and the takeover times for
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the four asynchronous evolutions are ranked with fixed line sweep being the
fastest, uniform choice being the slowest, and fixed and new random sweeps,
which are statistically indistinguishable, in between.

Synchro LS FRS NRS UC

64 × 16 62.15 (2.4) 29.99 (2.3) 38.1 (1.9) 39.37 (2.0) 48.96 (2.9)
128 × 8 117.07 (3.7) 55.37 (4.2) 70.57 (3.3) 73.26 (3.5) 89.48 (4.3)

Table 4.5. Mean takeover time, with standard deviation in parentheses, for binary
tournament selection and the five update methods on 64×16 and 128×8 rectangular
toroidal topologies. Mean values over 100 independent runs

Synchro LS FRS NRS UC

64 × 16 57.42 (2.1) 24.6 (2.2) 33.89 (2.1) 35.3 (1.9) 45.05 (2.9)
128 × 8 108.32 (3.1) 45.98 (3.5) 62.69 (2.6) 64.76 (3.0) 80.78 (4.6)

Table 4.6. Mean takeover time, with standard deviation in parentheses, for linear
ranking selection and the five update methods on 64 × 16 and 128 × 8 rectangular
toroidal topologies. Mean values over 100 independent runs

As expected, the selection pressure induced using different grid sizes reduces
as the grid becomes thinner [6, 41]. Figure 4.17 shows the different growth
curves that result when the values of the axes of the grid are changed from
those for a square to those for a thin rectangle, when the binary tournament
and the linear ranking selection schemes are used.

As it can be seen in Figs. 4.18 and 4.19, the models successfully predict the
experimental curves. When linear ranking selection is used, the accuracy of
the models is comparable, but the curves are not shown for brevity.

4.8 Varying the Radius

Sarma and De Jong have shown convincingly that the neighborhood’s size and
shape have an important influence on the induced global selection pressure in
grid-structured populations [126, 127]. To complete the study, in this section
the basic value of 1 used for the radius until now is changed by using a
generalized von Neumann neighborhood of radius 2 in both one- and two-
dimensional regular lattices. Such a neighborhood is defined as containing all
the individuals at distances smaller than or equal to the radius, where the
Manhattan distance is used on the two-dimensional grid.

The equation for a ring with radius 2 is as follows:
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Fig. 4.17. Growth curves for synchronous evolution on toroidal structures with
different ratios of axes using (a) binary tournament selection, and (b) linear ranking
selection. Mean values over 100 independent runs

⎧⎨
⎩

N(0) = 1,
N(1) = N(0) + 4p1,
N(t) = N(t − 1) + 2p2 + 2p1,

where pi is the probability that a copy of the best individual is selected when
i copies of it are present in the neighborhood.

Using the same geometrical approximation described in Sect. 4.5.3, it is
possible to obtain the model equations for a torus with a radius-2 general-
ized von Neumann neighborhood. However, since the expressions are rather
involved, they are omitted here. Details can be found in [65].

The models have been tested using a binary tournament selection mech-
anism: comparisons between the predicted and actual curves in the case of
synchronous update are shown in Fig. 4.20. The models are still accurate,
and could be extended to larger-radius generalized von Neumann neighbor-
hoods.

Although it is not apparent from the explicit recurrences, one can suppose
that when the radius tends to n/2 in the ring case, and when it tends to

√
n in

the grid case, then the curves tend to the panmictic limit. This can be clearly
seen in Fig. 4.21 a and Fig. 4.21 b for the ring and torus cases respectively,
where experimental curves for several radii are plotted.

4.9 Summary

In this chapter we have seen mathematical models that can accurately predict
the growth curves and the takeover time regime and values for a broad range
of cellular evolutionary algorithms on regular lattices. Both rings and toroidal
topologies have been studied. Two selection methods that are often used with
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Fig. 4.18. Experimental curves for a rectangular 64 × 16 topology with binary
tournament (a). Comparison of experimental takeover time curves (full lines) with
the model (dashed) in the case of linear ranking selection for five update methods:
synchronous (b), asynchronous line sweep (c), asynchronous fixed random sweep (d),
asynchronous new random sweep (e), and uniform choice (f)

small selection pools have been used for the experimental validation of the
models: tournament and linear ranking. Other selection methods, such as
(µ, λ) or (µ + λ) used in evolution strategies could also be studied, since the
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Fig. 4.19. Experimental curves for a rectangular 128×8 topology with binary tour-
nament (a). Comparison of the experimental takeover time curves (full lines) with
the model (dashed) in the case of linear ranking selection for five update methods:
synchronous (b), asynchronous line sweep (c), asynchronous fixed random sweep (d),
asynchronous new random sweep (e), and uniform choice (f)

models need only the actual probability of selection to be inserted into the
equations.
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Fig. 4.20. Comparison of experimental takeover time curves (full lines) with the
model (dashed) in the case of binary tournament selection for synchronous update in
the case of a ring with radius-1 (a) and radius-2 (b) neighborhoods, and for a torus
with radius-1 (c) and with radius-2 (d) generalized von Neumann neighborhoods

The main observation, already noted before by several researchers, is that
the selection intensity in the population is lower in lattices than in panmictic
populations. We have also seen, and this was previously unknown since only
the customary synchronous update method was used, that different asyn-
chronous policies give rise to significantly different global emergent selection
pressures, and can thus be used to control the explorative or exploitative char-
acter of the algorithm to some extent, without resorting to ad hoc tricks in
the selection methods.

Another way that can be used to control the selection intensity in cEAs is
through the size and shape of the neighborhood or, in the two-dimensional
case, by statically or dynamically adapting the ratio of the grid axes, with
“flatter” rectangular shapes giving lower global pressures.

In conclusion, cellular evolutionary algorithms on regular lattices are a sim-
ple and straightforward way of structuring the population that allows the
selection pressure to be controlled to an extent that makes tuning of the al-
gorithm to the problem easier. Thus, they offer a high degree of flexibility in
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Fig. 4.21. (a) Growth curves for rings with neighborhoods of increasing radius.
From right to left the radii are 2, 4, 8, 16, 32, 64, and 128. (b) Growth curves for
tori with neighborhoods of radius 1, 2, 3, 4, 5, 6, and 7, increasing from right to left.
The dashed curves in (a) and (b) pertain to the case of a panmictic population

problem-solving. In the next chapter, we shall see how these considerations
can be put into practice, by empirically studying a number of test problems
with cEAs.



5

Lattice Cellular Models: Empirical Properties

The previous chapter has laid the foundations for cellular evolutionary algo-
rithms for populations structured as regular lattices. In the present chapter
I would like to show how these lattice cEAs behave in practice on a number
of benchmark problems. Ideally, we would like the theoretical trends to be
confirmed by the computer experiments. This has been the case for the global
emergent selection intensity. However, now the picture becomes more complex
and more realistic, since we are studying full-fledged cEAs with selection, as
well as variation operators.

Several articles on the application of cEAs to optimization problems have
appeared, some of which are listed in the references (e.g. [16, 69, 71]). To
illustrate the main ideas, I shall use here some material from two previous
studies, one on cGAs [41], and the other on cellular genetic programming
(cGP) [57]. This chapter is intended to be self-contained but the original
references have more details, should the reader wish to study the issues more
deeply.

Following the analysis in the previous chapter, the main points that I would
like to illustrate here are the influence of the update mode and the grid shape
on the character of the search. Concerning synchronous and asynchronous cell
update policies, there is nothing new: these policies will be identical to those
introduced in Chap. 4. For the influence of grid shape influence, I shall use
the concept of a “rectangular grid” that was analyzed earlier, and the ratio
of the grid axes.

5.1 cGA Case Study

The algorithmic schema employed in the study is similar to the one that
appears in Sect. 4.2; it is just specialized to GAs:
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for each cell i in the grid do in parallel
generate a random individual i

end parallel for
while not termination condition do

for each cell i in the grid do in parallel
Evaluate individual i
Select individuals in the neighborhood N(i) by binary tournament
Recombine individuals with double-point crossover
Mutate offspring
Evaluate offspring(s)
Assign the best offspring to cell i

end parallel for
end while

This is the classical synchronous cEA. The asynchronous variants are sim-
ilar, except that the updating of the cells does not take place virtually simul-
taneously but rather in some specified sequential order, as explained in the
previous chapter.

5.2 Varying the Lattice Shape

After explaining the basic algorithm in the previous section, we now proceed
to characterize the population grid itself. In the previous chapter, some models
were derived to take account of nonsquare grids. These are acceptable but,
since they are expressed as elementary recurrences, they do not contain an
explicit dependence on any parameter that gives the amount of “flatness” of
the two-dimensional grid. For this reason, here I prefer to use the definition
of “radius” given by Alba and Troya [6], which is refined from the seminal
definition given in [126], to take account of nonsquare grids. The grid is
considered to have a radius equal to the dispersion of n∗ points on a circle
centered in (x, y) (Eq. 5.1):

rad =

r P
(xi − x)2 +

P
(yi − y)2

n∗ , (5.1)

x =

Pn∗
i=1 xi

n∗ , y =

Pn∗
i=1 yi

n∗

This definition always assigns different numerical values to different grids.
Although it is called a “radius”, rad measures the dispersion of n∗ patterns.
Other measures for symmetrical topologies would allocate the same numerical
value to different topologies (which is undesirable). The definition (5.1) not
only characterizes the grid shape but can also provide a value of the radius for
the neighborhood. As proposed in [126], the grid-to-neighborhood relationship
can be quantified by the ratio of their radii:
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ratiocEA =
radNeighborhood

radTopology
. (5.2)

When we are solving a given problem with a constant number of individuals
(n = n∗, to make fair comparisons), the radius of the topology will increase as
the grid becomes thinner (Fig. 5.1b). Since the neighborhood is kept constant
in size and shape throughout the study described here (we always use Linear 5,
also called the von Neumann neighborhood, Fig. 5.1a), the ratio will become
smaller as the grid becomes thinner.

2

(a) (b)

Fig. 5.1. (a) Radius of von Neumann neighborhood. (b) 5 × 5 = 25 and
3 × 8 = 24 grids. Approximately equal number of individuals with two different
ratios

After we have presented this characterization of the radius and topology by
means of a ratio, the main question still remains: what is the importance of
such a ratio measure? The answer, of course, is that, as we saw in the previous
chapter, reducing the ratio means reducing the global selection intensity on
the population, thus promoting exploration. This is expected to allow a higher
diversity in the genotypic pool, which could help improve results in difficult
problems such as multimodal or epistatic problems. On the other hand, the
search performed inside each neighborhood guides the exploitation of the algo-
rithm. Thus, we want to investigate how the ratio affects the search efficiency
over a variety of domains.

5.3 Selection Pressure, Grid Shape and Time

Here I shall recall a few concepts from the previous chapter for ease of ref-
erence. There we saw that synchronous and a few asynchronous cell update
policies give rise to a variable global selection intensity, and thus to a variable
takeover time. Indeed, if we keep the shape of the grid constant (say a square)
but we allow the cell update mode to change, we observe such an effect on
the selection pressure. In fact, it is found that the global selection pressures
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induced by the various asynchronous policies fall between the low synchronous
limit and the high panmictic bound (see Fig. 5.2 and [62]). Thus, by varying
the update policy it is possible to influence the explorative or exploitative
character of the search.
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Fig. 5.2. Takeover times with tournament selection in a 32 × 32 grid with a von
Neumann neighborhood. Mean values over 100 runs. The vertical axis represents the
fraction of the population consisting of the best individual as a function of time

Turning now to the effects of the grid shape, an interesting result is that
algorithms with a similar ratio show a similar selection pressure, as stated in
[127]. In Fig. 5.3 we can see growth curves for two algorithms with different
neighborhood and population radii, but with similar ratio values. The cases
plotted are those of a 32× 32 population with a von Neumann neighborhood,
and a population of size 64 × 64 with a Compact21 (C21) neighborhood. In
a C21 neighborhood, a central cell is surrounded by two cells in all directions
and the four corner cells are cut out.

Now, to observe how the shape of the grid influences the induced selection
pressure of the algorithm, the growth curves for several different cGAs using
the von Neumann neighborhood and six possible grid shapes are plotted in
Fig. 5.4 for a population of 1024 individuals. Note that the selection pressures
induced in synchronous rectangular grids is lower than that indicated by the
curve for a synchronous square grid (32× 32 population), which, as we found
before, means that thinner grids favor a more explorative style of search. This
figure can be compared with Fig. 4.17, in which a linear scale is used for time.

5.4 Test Suite

Choosing a set of test problems for benchmarking purposes is always a risky
exercise, a fact that was already noted in Chap. 3. Indeed, no test suite can
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Fig. 5.3. Growth curves of the best individual for two cGAs with different neighbor-
hood and population shapes, but similar ratio values. The vertical axis represents
the proportion of population consisting of best individuals as a function of time.
Selection is by binary tournament in both cases
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Fig. 5.4. Takeover times with binary tournament selection in populations of 1024
individuals with different grid shapes and a von Neumann neighborhood. Mean val-
ues over 100 runs. The vertical axis represents the proportion of the best individual
in the population as a function of time. The horizontal axis is on a logarithmic scale

represent all the kinds of problems that are likely to arise in practice. More-
over, even if this was possible, the no-free-lunch (NFL) theorem, or theorems,
[160] tell us that, averaged over all problems and problem instances, the per-
formance of all search algorithms is the same. In spite of this, people normally
want to solve specific problems for which there is extra information available.
This problem-specific knowledge can thus be used to improve the search, since
the NFL theorem does not prevent one finding an excellent searcher for a given
problem or problem family; all that it says is that this same algorithm will be
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bad on some other problems. Therefore, although no algorithm can be said to
be superior in all cases, there is still scope for algorithms that behave well on
particular problems or problem classes.

Incidentally, we can also see that the NFL theorems do not rule out the
possibility of constructing a portfolio of searchers, each of which, while not
optimal, is at least particularly good for a given family of problems or problem
instances, or problem subspace. Of course, how to efficiently organize the set
of algorithms in order for them to search effectively as a function of easily
computed and significant fitness landscape indices or of the progress of the
search, is an open problem. An original approach is suggested in [81].

Another important consideration is that the tests in this chapter have only
an illustrative purpose. The cEA used, a straightforward genetic cellular al-
gorithm, has not been tuned, nor does it include local search capabilities or
problem knowledge other than what is contained in the individual representa-
tion and the fitness function. Of course, such improvements would be needed
if the algorithms were intended to compete with the best solvers for a given
problem or problem class. Here we are mainly interested in comparing cEAs
among themselves as a function of two important parameters that have been
dealt with at length in the last and present chapters: operation timing and
grid shape.

That said, this benchmark is rather representative because it contains sev-
eral important features found in optimization, such as epistasis, multimodality,
deceptiveness, and problem generators. Moreover, in order to be more com-
plete, both combinatorial (discrete) optimization problems and continuous
ones are used. These are important ingredients in any work that tries to eval-
uate algorithmic approaches with the objective of obtaining reliable results,
as stated by Whitley et al. in [158]. For convenience of presentation, I shall
discuss the two main problem classes (discrete and continuous) separately. Let
us begin with the combinatorial problems.

5.4.1 Discrete Optimization Problems

The problems used here are the massively multimodal deceptive problem
(MMDP), the multimodal problem generator P-PEAKS, the error-correcting-
code (ECC) design problem, and the problem of maximum cut of a graph
(MAXCUT). Although there cannot be an optimal choice, as explained above,
this set of problems seem at least to be rather representative of different
degrees of difficulty and of various important application domains. Given
the computational limitations that any experiment must face, this should
be enough for us to obtain a good level of confidence in the results.

The problems are briefly described below in order to make the discussion
self-contained, as far as possible.
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Massively Multimodal Deceptive Problem (MMDP)

The MMDP is a problem that has been specifically designed to be difficult
for an EA [68]. It is made up of k deceptive subproblems (si) of 6 bits each,
whose values depend on the number of ones (unitation) in a binary string (see
Fig. 5.5). It is easy to see that these subfunctions have two global maxima
and a deceptive attractor at the midpoint.

Fig. 5.5. Basic deceptive bipolar function (si) for MMDP

In the MMDP, each subproblem si contributes to the fitness value according
to its unitation(Fig. 5.5). The global optimum has a value of k and is attained
when every subproblem is composed of zeros or six ones. The number of local
optima is quite large (22k), while there are only 2k global solutions. Therefore,
the degree of multimodality is regulated by the parameter k. We use here a
considerably large problem instance with k = 40 subproblems. The instance
we try to maximize for solving the problem is shown in the following equation,
and its maximum value is equal to k:

fMMDP (s) =
k∑

i=1

fitnesssi.

Multimodal Problem Generator (P-PEAKS)

The P-PEAKS problem [84] is a multimodal problem generator. A problem
generator is an easily parameterizable task which has a tunable degree of epis-
tasis, thus allowing one to derive instances of increasing difficulty at will. Also,
using a problem generator removes the opportunity to hand-tune algorithms
to a particular problem, therefore allowing more fairness when comparing al-
gorithms. With a problem generator, the algorithms are run on a high number
of random problem instances, since a different instance is solved each time the
algorithm runs, the predictive power of the results for the problem class as a
whole is increased.

The idea of P-PEAKS is to generate P random N -bit strings that represent
the location of P peaks in the search space. The fitness value of a string is the



92 5 Lattice Cellular Models: Empirical Properties

number of bits that the string has in common with the nearest peak in that
space, divided by N (as shown in 5.3). By using a small/large number of peaks
we can obtain weakly/strongly epistatic problems. In the work described here
we have used an instance of P = 100 peaks of length N = 100 bits each,
which represents a medium to high epistasis level [6]. The maximum fitness
value for this problem is 1.0. The fitness value is given by

fP−PEAKS(x) =
1
N

max
1≤i≤p

{N − HammingD(x, P eaki)}. (5.3)

Error-Correcting-Code Design Problem (ECC)

The ECC problem was presented in [95]. We shall consider a three-tuple
(n, M, d), where n is the length of each codeword (number of bits), M is
the number of codewords, and d is the minimum Hamming distance between
any pair of codewords. The objective is to find a code which has a value of
d as large as possible (reflecting greater tolerance to noise and errors), given
previously fixed values of n and M . The problem studied here is a simplified
version of that in [95]. In our case, we search half of the codewords (M/2)
that will make up the code, and the other half is made up by the complement
of the codewords computed by the algorithm.

The fitness function to be maximized is

fECC =
1

M∑
i=1

M∑
j=1,i�=j

d−2
ij

,

where dij represents the Hamming distance between codewords i and j in the
code C (made up of M codewords, each of length n). We consider here an

instance where M = 24 and n = 12. The search space is of size
(

4096
24

)
, which

is approximately 1087. The optimum solution for M = 24 and n = 12 has a
fitness value of 0.0674 [30].

Maximum Cut of a Graph (MAXCUT)

The MAXCUT problem looks for a partition of the set of vertices (V ) of a
weighted graph G = (V, E) into two disjoint subsets V0 and V1 such that the
sum of the weights of the edges with one endpoint in V0 and the other one
in V1 is maximized. Individuals are encoded as binary strings (x1, x2, . . . , xn)
of length n, where each digit corresponds to a vertex. If a digit is 1 then the
corresponding vertex is in the set V1; if it is 0 then the corresponding vertex
is in the set V0. The function to be maximized [87] is

fMAXCUT (x)=
n−1∑
i=1

n∑
j=i+1

wij ·
[
xi · (1 − xj) + xj · (1 − xi)

]
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Note that wij contributes to the sum only if nodes i and j are in different
partitions. While one can generate random instances of a graph to test the
algorithm, here we have used the case “cut20.09”, with 20 vertices and a
probability 0.9 of having an edge between any two randomly chosen vertices.
The maximum fitness value for this instance is 56.740064.

5.4.2 Experimental Analysis

Although a full-length study of the problems presented in the previous subsec-
tion is beyond our scope, I shall present results comparing synchronous and
asynchronous cGAs, and also cGAs that have different values of the ratio but
the same neighborhood shape (von Neumann). Again, note that the aim here
is not to compare the performance of cGAs with state-of-the art algorithms
and heuristics for combinatorial and numerical optimization. To achieve this,
at least the cGA parameters would have to be tuned and local search capa-
bilities would have to be built into the algorithm, which is not the case here.
Thus, the results pertain only to the performance of the different cGA update
methods, with different ratios, relative to each other.

The results were obtained using JCell v1.0, a custom simulation program
written in Java, with three different static ratios, and with the four asyn-
chronous update modes previously described. The cGAs based on these ratios
were synchronous. The configuration of the algorithm is detailed in Table 5.1,
while the static ratios used are shown in Table 5.2.

Population size 400 individuals
Selection of parents Binary tournament + binary tournament
Recombination DPX, pc = 1.0
Bit mutation Bit-flip, pm = 1/L
Length of individual L
Replacement Rep if Better

Table 5.1. Parameterization used in the algorithm

Name (shape of population) Value of ratio

Square (20 × 20 individuals) 0.11
Rectangular (10 × 40 individuals) 0.075
Narrow (4 × 100 individuals) 0.031

Table 5.2. Ratios studied

The following tables show the results for the problem suite: MMDP, Ta-
ble 5.3; P-PEAKS, Table 5.4; ECC, Table 5.5; and MAXCUT, Table 5.6. One
hundred independent runs were performed for each algorithm and for every
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problem in the test suite. The tables report the average of the final best fitness
over all runs, the average number of time steps needed to obtain the optimum
value (if obtained), and the hit rate (percentage of successful runs). Therefore,
the final distance from the optimum (especially interesting when the optimum
is not found), the effort expended by the algorithm, and its expected efficacy,
respectively, are reported.

Algorithm Avg. Solution (best=20) Avg. Generations Hit Rate

Square 19.813 214.18 57%
Rectangular 19.824 236.10 58%
Narrow 19.842 299.67 61%

LS 19.518 343.52 23%
FRS 19.601 209.94 31%
NRS 19.536 152.93 28%
UC 19.615 295.72 36%

Table 5.3. MMDP problem with a maximum of 1000 generations

Algorithm Avg. Solution (best=1) Avg. Generations Hit Rate

Square 1.0 51.84 100%
Rectangular 1.0 50.43 100%
Narrow 1.0 53.94 100%

LS 1.0 34.75 100%
FRS 1.0 38.39 100%
NRS 1.0 38.78 100%
UC 1.0 40.14 100%

Table 5.4. P-PEAKS problem with a maximum of 100 generations

Algorithm Avg. Solution (best=0.0674) Avg. Generations Hit Rate

Square 0.0670 93.92 85%
Rectangular 0.0671 93.35 88%
Narrow 0.0673 104.16 94%

LS 0.0672 79.66 89%
FRS 0.0672 82.38 90%
NRS 0.0672 79.46 89%
UC 0.0671 87.27 86%

Table 5.5. ECC problem with a maximum of 500 generations

From inspection of these tables some conclusions can be clearly drawn. First,
the asynchronous algorithms tend to need a smaller number of generations to
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Algorithm Avg. Solution (best=56.74) Avg. Generations Hit Rate

Square 56.74 11.26 100%
Rectangular 56.74 11.03 100%
Narrow 56.74 11.88 100%

LS 56.74 9.46 100%
FRS 56.74 9.69 100%
NRS 56.74 9.55 100%
UC 56.74 9.58 100%

Table 5.6. MAXCUT problem with a maximum of 100 generations

locate an optimum than do the synchronous ones, except in the case of the
MMDP problem. Statistical tests not shown here (see [41]) confirm that the
differences between the asynchronous and synchronous algorithms are signif-
icant. This indicates that the asynchronous versions perform more efficiently
with respect to cEAs with different static ratios, a result that confirms the
influence of the more intense selection of asynchronous cEAs.

Conversely, if we pay attention to the success (hit) rate, it can be concluded
that the synchronous policies with various ratios outperform the asynchronous
algorithms (except for the ECC problems): slightly in terms of the average
final fitness, and clearly in terms of the probability of finding a solution (i.e.
the frequency of location of the optimum).

Another interesting result is the fact that we can define two classes of prob-
lems: those solved by all methods to optimality (100% hit rate) and those
in which no 100% rate is achieved at all. The former seem to be suitable for
straight cEAs, while the latter need some help, for example by including local
search.

In order to summarize the large set of results and draw some useful con-
clusions, a final ranking of the algorithms following three different metricsis
presented: average best final solution, average number of generations for suc-
cess, and hit rate. Table 5.7 shows the three rankings, which go from 1 (best)
to 7 (worst) according to the three criteria.

Avg. solution Avg. generations Hit rate

1 Narrow 4 1 NRS 8 1 Narrow 4
2 Rectangular 9 2 LS 10 2 Rectangular 9
2 FRS 9 3 FRS 11 2 FRS 9
4 NRS 10 4 UC 16 4 NRS 11
5 UC 11 5 Rectangular 19 5 Square 12
5 LS 11 6 Square 21 5 UC 12
7 Square 12 7 Narrow 27 5 LS 12

Table 5.7. Ranking of the algorithms
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As one would expect after the previous comments, synchronous algorithms
with “narrow” and “rectangular” ratios are in general more accurate than
all the asynchronous algorithms, according to the criteria of average best
final fitness and of hit ratio, at least for the test problems used here, with a
special leading position for narrow population grids. On the other hand, the
asynchronous versions clearly outperform any of the synchronous algorithms
in terms of the average number of generations, with a trend towards NRS as
the best-ranked flavor of cGA for the test suite.

In summary, asynchronous algorithms seem to be numerically more efficient
(faster) than synchronous ones for the P-PEAKS, ECC, and MAXCUT prob-
lems, but not for the MMDP. On the other hand, synchronous algorithms
outperform asynchronous ones in terms of the hit rate for these benchmarks,
which could be an important issue for many applications. In particular, the
more explorative character of the narrow population structure, with its cor-
respondingly lower selection pressure, seems to allow a more accurate search
in most cases. Again, it has to be pointed out that the results cannot be
immediately generalized to other problems or problem types. However, the
picture that emerges from this empirical investigation is a coherent one, and
it essentially confirms the importance of selection intensity considerations.

5.4.3 Continuous Optimization Problems

In this and the next subsection, the empirical tests on combinatorial opti-
mization problems are extended to some continuous functions. The functions
that were selected for the study are three typical multimodal numerical bench-
marks: Rastrigin’s (RASTR) and Ackley’s (ACKL) functions, and a fractal
(FRAC) function. In contrast to the binary-coded problems above, here real
coding is used. There are well-known reasons for this choice, a good discussion
of which can be found in Chap. 5 of Michalewicz’s book [99]; the floating-point
implementation described in that book was used here.

Rastrigin’s Function (RASTR)

The generalized Rastrigin function is a sinusoidally modulated function with
a global minimum of zero at the origin. It is a typical example of a nonlinear
multimodal function. It was first proposed by Rastrigin as a two-dimensional
function and has been generalized by Mühlenbein and Schierkamp-Voosen in
[107]. This function is fairly difficult owing to its large search space and its
large number of local minima, although the function is separable and the local
minima are symmetrical:

fRASTR(x) = nA +
n∑

i=1

x2
i − A cos(ωxi).

The constants are given by A = 10 and ω = 2π. The domain of variables
xi, i = 1, . . . , n, is −5.12 ≤ xi ≤ 5.12, and n = 10. The function has a global
minimum at the point f(0) = 0.



5.4 Test Suite 97

Ackley’s Function (ACKL)

Ackley’s function is a multimodal test function obtained by cosine modula-
tion of an exponential function. Originally proposed by Ackley [1] as a two-
dimensional function, it has been generalized by Bäck et al. [15]. Unlike Rast-
rigin’s function, Ackley’s function is not separable, even though it also shows
a regular arrangement of the local optima. The function is defined by

fACKL(x) = −a exp

⎡
⎣−b

(
1
n

n∑
i=1

x2
i

)1/2
⎤
⎦ − exp

(
1
n

n∑
i=1

cos(cxi)

)
+ a + e.

The constants are a = 20, b = 0.2, and c = 2π. The variables xi, i = 1, . . . , n
are in the domain −32.768 ≤ xi ≤ 32.768. This function has a global minimum
at the point f(0) = 0.

Fractal Function (FRAC)

This function has been taken from [14], where its construction, as well as the
motivations for introducing it as a test problem, are given. The function allows
the degree of ruggedness to be controlled, and it is likely to capture features
of real-world noisy objective functions. The function is defined as follows

fFRAC(x) =
n∑

i=1

(C′(xi) + x2
i − 1),

where

C′(z) =

⎧⎨
⎩

C(z)
C(1)|z|2−D if z �= 0,

1 if z = 0,

and

C(z) =
∞∑

j=−∞

1 − cos(bjz)
b(2−D)j

.

The constants were D = 1.85 and b = 1.5 in the experiments. The 20 variables
xi (i = 1, . . . , 20) varied in the range [−5, 5]. The infinite sum in the function
C(z) was calculated in practice by starting with j = 0 and alternating the
signs of the j values. The sum was stopped when the relative difference be-
tween its previous and present values was lower than 10−8 or when j = 100
was reached.

5.4.4 Experimental Analysis

For the study described here, we use the same asynchronous update policies
and grid-axei ratios as were employed for the combinatorial problems. On the
other hand, since the representation of the individual was now of floating-point
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Population size 400 individuals
Selection of parents Binary tournament + binary tournament
Recombination AX, pc = 1.0
Bit mutation Uniform, pm = 1/2L
Length of individual L
Replacement Rep if Better

Table 5.8. Parameterization used in the algorithm for the real-encoded problems.
“AX” stands for “standard arithmetic crossover”

type, specific genetic operators were needed. The operators and parameters
used are detailed in Table 5.8 (see also [99]).

The results of the experiments are reported in the following tables: RASTR,
Table 5.9; ACKL, Table 5.10; and FRAC, Table 5.11. As in the discrete prob-
lems, these tables contain values for the average of the final best fitness, the
average number of generations needed for finding it, and the hit rate. These
three values were calculated over 100 independent runs. For these three real-
coded problems, a run was stopped successfully as soon as an individual was
found with a fitness within 0.1 of the optimum.

Algorithm Avg. solution (best≤ 0.1) Avg. generations Hit rate

Square 0.0900 323.8 100%
Rectangular 0.0883 309.8 100%
Narrow 0.0855 354.2 100%

LS 0.0899 280.9 100%
FRS 0.0900 289.6 100%
NRS 0.0906 292.2 100%
UC 0.0892 292.4 100%

Table 5.9. RASTR problem with a maximum of 700 generations

Algorithm Avg. solution (best≤ 0.1) Avg. generations Hit rate

Square 0.0999 321.7 78%
Rectangular 0.0994 293.1 73%
Narrow 0.1037 271.9 65%

LS 0.0932 302.0 84%
FRS 0.0935 350.6 92%
NRS 0.0956 335.5 87%
UC 0.0968 335.0 85%

Table 5.10. ACKL problem with a maximum of 500 generations

The results obtained on continuous problems are not as clear as in the
discrete case. With respect to the average number of generations needed to
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Algorithm Avg. solution (best≤ 0.1) Avg. generations Hit rate

Square 0.0224 75.2 94%
Rectangular 0.0359 62.8 78%
Narrow 0.1648 14.6 16%

LS 0.0168 69.7 98%
FRS 0.0151 71.5 100%
NRS 0.0163 73.6 98%
UC 0.0138 72.8 96%

Table 5.11. FRAC problem with a maximum of 100 generations

find an optimal solution, the asynchronous algorithms are not always faster
than the synchronous ones; examples are the ACKL and FRAC problems, but
the differences are not always statistically significant. Also, unlike what was
observed in the case of discrete problems, the success rates of the asynchronous
algorithms are often higher than those of the synchronous ones. The FRS cEA
is the only algorithm which is able to find the solution in all executions for
the FRAC problem.

These results show that although the search behavior of a cEA is certainly
related to its induced selection pressure, several other factors enter into the
global picture. The actual behavior results from the interplay of selection, rep-
resentation, and the particular genetic operators used and their parameters.
And, of course, we should not forget that, in the end, the nature of the par-
ticular fitness landscape is the single most important feature of the problem
that influences the search.

In order to summarize these results, Table 5.12 gives a ranking of the algo-
rithms for all the problems in terms of the average solution found, the number
of generations needed to find an optimal solution, and the success rate. It can
be seen from this table that there exists a trend for asynchronous algorithms to
perform better than synchronous ones in terms of the average solution found
and the success rate, while synchronous algorithms with a variable ratio seem
to be more efficient than asynchronous algorithms in general (The “square”
and “LS” algorithms are the exceptions).

Avg. solution Avg. generations Hit rate

1 8 1 LS 7 1 FRS 3
2 LS 9 2 Narrow 9 5 NRS 5
2 FRS 9 2 Rectangular 9 4 LS 7
4 NRS 13 4 FRS 13 6 UC 8
4 Rectangular 13 5 UC 14 7 Square 11
6 Narrow 15 6 NRS 15 3 Rectangular 13
7 Square 16 7 Square 17 2 Narrow 15

Table 5.12. Ranking of the algorithms with continuous problems
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5.5 Cellular Genetic Programming

To pursue the empirical analysis, in this section I present another experi-
mental investigation of cellular evolutionary algorithms, this time based on
genetic programming. This case study uses the same test functions that were
described in Sect. 3.2, to which the reader is referred for an introduction. In
Chap. 3 we studied the empirical behavior of multiple, communicating GP
populations i.e. island GP, for these problems. In this section we shall com-
pare this population structure with a cellular population of the same size on
a square two-dimensional toroidal lattice, on the same benchmark problems.

While cGAs or cellular cvolution strategies (cESs) are rather common, cel-
lular genetic programming (cGP) has rarely been used. However, there are
no particular reasons for this lack of interest, and cGP is certainly a worthy
member of the evolutionary-computing family, as some investigations have
clearly shown [55, 139].

For the experiments described here, the parameters were the same as those
of Chap. 3 for standard genetic programming and island GP. For cGP, a
two-dimensional square grid with periodic boundary conditions and a von
Neumann neighborhood was used. The algorithm was synchronous, selection
was done by binary tournament, the crossover and mutation were the same
as in the “standard” version of GP (see Sect. 3.2), and the central individual
was replaced by the best individual in the neighborhood after the genetic
operations.

5.5.1 Experimental Results

I shall show a summary of the results in two areas, as in Chap. 3: compu-
tational effort versus time, and diversity. Details of the implementation and
more data can be found in [57].

5.5.2 Fitness Evolution

The averages of the best fitness against effort are reported in Fig. 5.6 for
the three test problems and for the three population structures: panmictic,
islands, and toroidal grid. Again, we can see how the “magic of structured
population” manages to improve results in a significant manner. Indeed, both
cGP and island GP find better solutions quicker than standard GP on the
average. And this is confirmed by statistical significance tests (see [57]).

On the other hand, cGP and island GP are not easy to tell apart statisti-
cally and have roughly similar problem-solving performances. For the artificial
ant problem (Fig. 5.6(a)) the cellular model outperforms the island model, re-
quiring less effort to reach the same average solution fitness level. For the even
parity and symbolic regression problems (Fig. 5.6(b) and (c)), cGP shows a
quick improvement of fitness at the beginning of the runs, but then the curve
levels-off and the island system curve crosses it over and converges to better
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Fig. 5.6. Best mean fitness vs. computational effort. Ant problem (a), even-parity-4
problem (b), and symbolic regression problem (c) (note the logarithmic scale on the
abscissae in (c)). The curves are averages over 100 independent runs

average solution quality. This behavior is related to these particular prob-
lems and to exploitation/exploration characteristics of the algorithms, as we
have seen. The issue will taken up again below when analyzing the diversity
evolution behavior of the algorithms, a feature that is directly related to ex-
ploration/exploitation character. For even harder test problems it might pay
to be less exploitative i.e., cGP might have an edge in these cases.

5.5.3 Diversity Evolution

In the following paragraphs the evolution of diversity is studied for multipop-
ulation and cellular genetic programming. For the sake of comparison, the
results for standard GP are also reported in the figures. The various diversity
measures have been defined in Sect. 3.9 of Chap. 3. Apart from those, for
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cGP, and any cEA, it is possible to define other statistical measures that are
related to diversity. These statistics take into account the local, slow diffusion
nature of cEAs and are certainly more relevant at the cell assembly level. For
brevity these will not be dealt with here, but the interested reader can find
the relevant definitions in [27], and their application to cGP in [57].
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Fig. 5.7. Phenotypic entropy against generation number. Ant problem (a), even 4
parity problem (b), and symbolic regression problem (c) Curves are averages over
100 independent runs.

Phenotypic Diversity

We first discuss the phenotypic behavior. Figure 5.7 shows the phenotypic
entropy for the three test problems. Entropy represents the amount of disor-
der of the population, thus low entropy means low diversity. However, since
the phenotypic measure compares the number of different fitness values, it
could be interpreted as the number of groups having the same fitness value.
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Thus high entropy can be considered as the presence in the population of
a high number of small groups of individuals, each group having the same
fitness value, while low entropy would mean a low number of large groups of
individuals.

In this perspective, the fact that the cellular model always has a lower phe-
notypic entropy with respect to both the island and the panmictic models, as
can be seen in the figure, can be interpreted as the presence in the population
of a low number of groups each containing many individuals having the same
fitness value. This is confirmed by the low phenotypic variance of the cellular
model shown in Fig. 5.8. The jigged behavior of the curves referring to the
subpopulations in the island model is due to the sudden change in diversity
when the new individuals enter the population at fixed generation numbers,
since the migration model is synchronous.

Low phenotypic diversity in the cellular model can be explained by the slow
diffusion of the information across the grid that induces patches of individuals
having similar characteristics. It is worth to point out that low phenotypic
entropy does not imply worst problem-solving capabilities for cGP. Indeed,
looking back at the curves in Fig. 5.6 clearly shows that the quality of the
average solutions found, as well as the effort that is spent are comparable to
those of the island model, as already noted in the previous section.

Genotypic Diversity

As in the case of phenotypic entropy, Fig. 5.9 shows that genotypic entropy is
lower for the cellular model with respect to both the island and the panmictic
ones, while genotypic entropy for the island model is almost the same as for
the panmictic model for ant and parity problems, and lower for symbolic
regression.

This behavior suggests that, as regards the cellular model, there are few
groups of individuals having the same distance from the empty tree, each
group being composed by many trees. However, as Fig. 5.10 suggests, trees in
the population are very dissimilar among them because the variance is high,
thus the distance of each tree from the origin tree is substantially different
from the average distance of all the trees from the origin tree.

The coexistence of high genotypic diversity and low phenotypic diversity in
the cellular model could seem contradictory. However this apparent conflicting
behavior can be explained by the fact that though the trees are structurally
different, this does not imply that their fitness must be different too. In the
cellular case it means that almost all the trees have good fitness values and this
explains the good convergence of the cellular model. In addition, we know that
the same overall behavior is observed in GP for the test problems irrespective
of the population structure. The only important difference is that in cGP the
diversity is strongly related to the geographical position in the grid, a situation
that cannot be detected from the global diversity measures but that is clearly
apparent from local statistics (see [27, 57]).
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Fig. 5.8. Phenotypic variance against generation number. Ant problem (a), even 4
parity problem (b), and symbolic regression problem (c) Curves are averages over
100 independent runs.

5.6 Summary

In this chapter a rather systematic exploration of the empirical properties of
cEAs has been presented. The results on the test problems for cGAs confirm,
with some exceptions, that the problem-solving capabilities using the vari-
ous update/ratio modes are correlated to their induced selection pressures,
showing that exploitation plays an important role. It is clear that the role
of exploration might be more important on even harder problem instances,
but this aspect can be addressed in the algorithms by using more explorative
settings, as well as by using different cEA strategies at different times during
the search dynamically. This last idea has been put to practice in [4] where
the grid ratio is changed automatically in a self-adaptive manner.

For the discrete optimization problems asynchronous algorithms are gen-
erally faster than synchronous ones for most problems, as expected from the
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Fig. 5.9. Genotypic entropy against generation number. Ant problem (a), even 4
parity problem (b), and symbolic regression problem (c) Curves are averages over
100 independent runs.

respective selection pressures. On the other hand, synchronous algorithms
outperform asynchronous ones in terms of the hit rate for the problems stud-
ied. This trend is less clear in the continuous problems, where the differences
among the algorithms are smaller. Flatter grids further favor exploration over
exploitation. In conclusion, cEAs seem to possess a number of natural degrees
of freedom that can be easily tuned as a function of the problem, thus offering
a richer range of behaviors than panmictic algorithms.

Finally, the experiments on the seldom used synchronous cGP have shown
that it is more efficient than standard GP and roughly equivalent to multi-
population GP for the problems studied.



106 5 Lattice Cellular Models: Empirical Properties

0 50 100 150 200
0

2

4

6

8

10

12

Generation

G
en

ot
yp

ic
 V

ar
ia

nc
e

Panmictic
Islands
Cellular

0 50 100 150 200
0

5

10

15

20

25

30

35

40

Generation

G
en

ot
yp

ic
 V

ar
ia

nc
e

Panmictic
Islands
Cellular

(a) (b)

0 50 100 150 200
0

5

10

15

20

25

30

35

Generation

G
en

ot
yp

ic
 V

ar
ia

nc
e

Panmictic
Islands
Cellular

(c)

Fig. 5.10. Genotypic variance against generation number. Ant problem (a), even 4
parity problem (b), and symbolic regression problem (c) Curves are averages over
100 independent runs.



6

Random and Irregular Cellular Populations

In Chap. 3, I described and analyzed the replication and propagation of in-
dividuals under the effects of selection in cellular populations possessing a
regular lattice structure. This kind of topology is a natural one, and it has
often been used in the theory and applications of cEAs. We have seen that
the lattice topology has a strong influence on the selection pressure, and thus
on the explorative or exploitative character of the search. However, regular
lattices are just a class of possible structures. Nothing prevents us from giving
the population any graph structure that we please. The most general graph
structure is, in a sense, the random graph, to be defined below. We shall thus
investigate the similarities the differences between panmictic populations and
cellular populations that are randomly structured, in the first part of this
chapter. But the story does not end here. The last few years have seen a dra-
matic increase of interest in the structure of the big networks that form part
of our daily environment such as the World Wide Web, the Internet, electrical
power networks, and many others. These networks have properties that are
unparalleled in lattices or random networks. In turn, the structure of these
networks gives rise to a wide range of dynamical behaviors. We shall thus
examine the influence that these kinds of topologies may have on cellular evo-
lutionary algorithms in the second part of the chapter. The reader is warned
that these kinds of population topologies are seldom, if ever, used in EA work.
In spite of this, I have chosen to include them for a number of reasons, some
of which will become clear further ahead in the chapter.

The following section is an introduction to random graphs to an extent
that, though brief, should be sufficient to understand the subject matter of
this chapter. The reader is advised at this point to go back to Sect. 1.1 to find
the relevant concepts and definitions related to graphs.
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6.1 Random Graphs

The random-graph model was formally defined by Erdös and Rényi at the end
of the 1950s [21]. In its simplest form, the model consists of N vertices joined
by edges that are placed between pairs of vertices uniformly at random. In
other words, each of the possible N(N −1)/2 edges is present with probability
p and absent with probability 1 − p. The model is often called GN,p to point
out the fact that, rigorously speaking, there is no such thing as a random
graph, but rather an ensemble GN,p of equiprobable graphs.

Another closely related model of a random graph considers the family of
graphs GN,M with N vertices and exactly M edges. For 0 ≤ M ≤ (

N
2

)
, there

are s =
(
N(N−1)/2

M

)
graphs with M edges. If the probability of selecting any

one of them is 1/s, then the ensemble GN,M is called the family of uniform
random graphs. For M ∼ pN the two models are very similar, but we shall
use GN,p in what follows.

A few simple facts are worth noting about random graphs. The average
degree 〈k〉 of a graph G is the average of all the vertex degrees in G: 〈k〉 =
(1/N)

∑N
j=1 kj , where kj is the degree of vertex j. If |E| = M is the number

of edges in G, then M = (N〈k〉)/2, since
∑N

j=1 kj = 2M (each edge is counted
twice).

The expected number of edges of a random graph belonging to GN,p is
clearly (1/2)N(N−1)p, but since each edge has two ends, the average number
of edge ends is N(N − 1)p, which in turn means that the average degree of a
vertex in a random graph is

〈k〉 =
N(N − 1)p

N
= (N − 1)p � Np, (6.1)

for sufficiently large N .
Another important property of a connected random graph is that the aver-

age path length is of the order of logN .
The Erdös and Rényi model has a number of interesting properties that

are outside the scope of this book (see for example [21]). However, one rather
surprising property is worth mentioning: the presence of a critical point at
which a phase transition takes place. Indeed, Erdös and Rényi proved that
for small values of 〈k〉 there are few edges in the graph, which is globally
disconnected, and the connected components are small. Above a critical value
of 〈k〉 = 1, however, a large connected component appears, which is called
the giant component and whose size is proportional to N . Below the critical
point, i.e. for 〈k〉 < 1, the typical size of the small components is O(log N).
For the sake of illustration, although it is too small for the statistics to be
fully reliable, Fig. 6.1 depicts a random graph with N = 40 and p = 0.1. The
graph is sparse, with an average degree 〈k〉 of about four, and there is a giant
connected component. There are also some unconnected vertices, which are
components of size one.
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Fig. 6.1. A small random graph with 40 vertices and a probability of connection of
two vertices p equal to 0.1

The concepts outlined above will now be used in modeling selection intensity
in randomly structured cellular populations.

6.2 Selection Intensity in Random Cellular Populations

The random graph is a well-studied structure in mathematics, biology, and
the social sciences. For example, models of infection transmission in a popu-
lation of individuals with random links between them have been known for
years [111]; likewise, information transmission in society and in the economy
has sometimes been modeled using a random graph structure. Most propaga-
tion models are based on differential equations. Instead, here we use discrete
models based on difference equations, which seems more suitable for finite
evolving spatial populations.

Equation (4.1) defines the random variable N(t) denoting the number of
copies of the best individual in the population at time step t. Below we give
the recurrences describing the growth of the random variable N(t) in evolv-
ing populations in cEAs structured on graphs for the synchronous and two
of the asynchronous update policies described in Chap. 4. In general, such
recurrences take the common form

E[N(t)] =
n∑

i=1

P [N(t − 1) = i] (i + ∆i(t − 1)) , (6.2)

where ∆i(t − 1) = N(t) − N(t − 1), given N(t − 1) = i, is a random variable
as well. This random variable will depend on the update method. Let us
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suppose that at time step t − 1 there are i copies of the best individual. At
the next time step, each of the other n − i individuals will contain a copy of
the best with a probability depending on its number of neighbors, the number
of its neighbors containing a copy of the best and the selection operator. The
first two conditions can be seen as random variables, both depending on the
topology of the population.

Therefore, in (6.2) we have

∆i(t − 1) =
n−i∑
r=1

n−1∑
j=1

P [K = j]
j∑

l=0

P [Bj = l]psel(j, l), (6.3)

where K denotes the number of neighbors of an individual, Bj stands for the
number of copies of the best individual in a neighborhood of j individuals,
and psel(j, l) is the probability of selecting a copy of the best individual from
the l best of j neighbors.

According to the definitions in Sect. 6.1, random graphs with n vertices
belonging to the family Gn,q can be constructed by taking all possible pairs of
vertices and connecting each pair with probability q1. In the general case of a
cEA in which a population structured as a random graph with a probability
0 < q < 1 of having an edge between any pair of vertices evolves, the random
variables K and Bj of (6.3) have the following probability functions:

P [K = j] = qj(1 − q)n−1−j ,

P [Bj = l] =
{

1 if l = (ij)/(n − 1),
0 otherwise,

since any of the j neighbors of an individual has a probability i/(n − 1) of
containing a copy of the best individual.

We have seen that cellular evolutionary algorithms are good candidates for
using selection methods that are easily extensible to small local pools, such
as ranking and tournament. The equations for the growth of individuals for
those local selection policies are mathematically rather complicated for ran-
domly structured populations, involving higher moments of the distribution.
Therefore, here I use a simplified selection policy, called uniform selection,
which gives rise to a useful and interesting model.

This selection mechanism randomly selects an individual in the selection
pool (i.e. the neighborhood of a given individual). The selected individual
then replaces the first individual under consideration if it has a better fitness.
Such an operator is similar to the local parent selection introduced by Gorges-
Schleuter in [72], except that a (µ+λ/µ, ν)-LES is used instead of a (µ, λ/µ, ν)-
LES, with κ = ∞ (κ being the upper limit for the life span) and ρ = 1 (ρ
being the number of selected ancestors).

1 I use n and q in this section instead of the customary N and p to avoid confusion
with N(t) and the probability of selection p.
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In a cEA whose population is structured as a random graph, since the
number of edges incident on a given edge is a binomial random variable, we
can use the mean-field hypothesis, which consists in taking for all vertices the
average number of neighbors q(n−1). In this way, any vertex “sees” the same
isotropic average environment. Under this hypothesis, the expected number
of copies of the best individual in a neighborhood not containing a copy of the
best at time step t is E[Bq(n−1)] = qN(t). We shall see that this approximation
is good unless the probability q is very low. In the case of uniform selection,
the probability that a copy of the best is selected at time step t is

prnd
sel (q(n − 1), qN(t)) =

qN(t)
q(n − 1)

=
N(t)
n − 1

. (6.4)

This approximation, valid when the mean-field hypothesis can be used, gives
a probability equal to that of the panmictic case, where the graph describing
the topology of the population is a complete graph. In fact, for this structure,
each individual has exactly K = n − 1 neighbors, and the number of copies
of the best individual in a neighborhood not containing a copy of the best at
time step t is Bn−1 = N(t). In the case of uniform selection, the probability
that a copy of the best is selected at time step t is

ppan
sel (n − 1, N(t)) =

N(t)
n − 1

. (6.5)

Therefore, the selection pressure for a randomly structured population is simi-
lar to that for a panmictic one, when the mean-field hypothesis can be applied.

For synchronous update, using (6.2) and (6.5), the recurrence for N(t) can
be written as{

N(0) = 1
E[N(t)] = E[N(t − 1)] + (n − E[N(t − 1)])(E[N(t − 1)])/n,

(6.6)

which is a typical form of a discrete logistic recurrence.
The two asynchronous policies can be treated in a similar manner. Since the

derivation is rather cumbersome, the resulting growth equations are omitted
here but can be found in [64].

6.3 Experimental Results

We report experimental data for the three update policies and panmictic and
randomly structured populations using uniform selection. The synchronous
and two asynchronous update modes were used, the latter being new random
sweep and uniform choice. See Chap. 4 for the definitions of the asynchronous
modes.

In all the curves in Fig. 6.2 the population grows exponentially at first
and then saturates, giving the usual sigmoidal shape for the growth curves.
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However, one can distinguish the three update policies very clearly, with NRS
being faster than the synchronous mode. The UC policy starts in a similar
waysimilar to NRS and then joins the synchronous case when saturation sets
in.
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Fig. 6.2. Theoretical growth curves for the three update policies (a). Experimental
growth curves for the panmictic case (b), a random graph with q = 0.1 (c), and a
random graph with q = 0.01 (d), for the three update policies. The population size is
1024. The experimental curves in (b), (c), and (d) are averages over 100 independent
runs

Figure 6.2 a depicts the theoretical curves corresponding to the three update
modes specified above. Of course, according to the mean-field approximation,
the panmictic and random-graph cases are actually the same. This is clearly
confirmed by Figs. 6.2 b,c, which show the experimental curves for the pan-
mictic case and the random-graph case with probability q = 0.1. Figure 6.2
d shows the experimental random-graph case with q = 0.01: we observe that
for low probabilities, the mean-field hypothesis gives a worse approximation
to the experimental results. It should be noted that for low q values there is
a nonnegligible probability that the generated random graph is disconnected.
To avoid these cases, we considered only connected graphs in our experiments,
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randomly sampled from the family Gn,q of all possible random graphs with n
vertices and edge probability q.

Table 6.1 gives the predicted and experimental average takeover times for
the three update modes. Results are reported for the panmictic case and the
two randomly generated graph structures previously described .

Synchronous Asynchronous NRS Asynchronous UC

Predicted 14 11 16
Panmictic mean 14.84 (1.36) 11.52 (1.25) 16.69 (1.99)

Random (q=0.1) mean 15.07 (1.22) 11.96 (1.25) 16.62 (1.68)
Random (q=0.01) mean 20.32 (3.23) 16.46 (2.78) 21.15 (3.53)

Table 6.1. Predicted takeover times and experimental mean takeover times (with
corresponding standard deviations) for the three update methods. The experimental
results were obtained over 100 independent runs. The population size was n = 1024
in all cases

In Figs. 6.3 and 6.4, a direct comparison is provided by superposing on the
same graph the theoretical curves for the synchronous (a), asynchronous NRS
(b), and asynchronous UC (c) updates, and ten randomly chosen correspond-
ing experimental curves. This is more informative than a comparison with
the average experimental curves since the theoretical result is an expectation
curve. Figure 6.3 reports results for the random graph with q = 0.1; it is clear
that there is a very good agreement between the predictions of the models
and the experiments. As stated above, we cannot hope that such an agree-
ment will also hold for random graphs with a very low probability q. In fact,
Fig. 6.4 shows that the approximation is much worse. This is understandable
qualitatively on the following grounds. In a random graph, the node degree is
binomially distributed by construction. Therefore, for 1024 vertices, the aver-
age number of neighbors of an individual is about 100 for q = 0.1 and about
10 for q = 0.01. Thus the standard deviation in the latter case is about 3,
while it is about 9 in the former. This means that many nodes will have very
few edges in the q = 0.01 case, which will slow down the propagation rate of
the best individual.

6.4 Small-World Networks

Random graphs are interesting objects as they can be used to establish gen-
eral quantitative properties that are present in those graphs with very high
probability (this is a mathematical statement that will not be further qualified
here). In our context of structured EAs, we have seen that randomly struc-
tured cellular populations have interesting properties that can be modeled
quantitatively, to some extent. They are also a useful model for generating
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Fig. 6.3. Theoretical curves (black) and experimental curves (gray) for a random-
graph population with q = 0.1 using synchronous update (a), and asynchronous
NRS (b), asynchronous UC (c)

problem instances for testing network algorithms [130], and they are used in
other ways too. But are random graphs a useful model of the networks that
permeate society? Actually, social scientist felt qualitatively as early as the
1950s that social and professional links and acquaintances did not follow a
random structure (see, for instance, Milgrams’s experiment in [18]). For ex-
ample, if a person has some relationship with two others, then the latter two
are more likely to know each other than are two arbitrary persons. This does
not fit the random-graph model, however, where the likelihood that two given
nodes are connected is the same independent of any other consideration.

A quantitative answer to this question came only a few years ago, opening
up a flurry of research that is reshaping complex-system thinking to a large
extent and is still far from slowing down. In a groundbreaking paper, Watts
and Strogatz [155] proposed a network construction algorithm that gives rise
to graphs having the following properties: the path length from any node to
any other node is short, as in random graphs, but, unlike random graphs, there
is local structure in the network. Watts and Strogatz called their networks
small-world networks, a term that has been in use for a long time in the field
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Fig. 6.4. Theoretical curves (black) and experimental curves (gray) for a random-
graph population with q = 0.01 using synchronous update (a), asynchronous NRS
(b), and asynchronous UC (c)

of social games to point out the fact that there is a small separation between
any two persons in a social network.

The discovery of these new properties was made possible by the abundance
of online network data and the computer power to treat this data, something
that was not available to social scientists at earlier times. Now it was finally
feasible to measure and analyze “real” networks with hundreds or even tens
of thousands of nodes. Following Watts and Strogatz’s work, many networks
have been studied both man-made and natural: the Internet, the World Wide
Web, scientific collaboration and coauthorship networks, metabolic and neural
networks, air traffic, telephone calls, and many others. Two recent, excellent
reviews of this work are to be found in [9, 111]. Most of these studies have
confirmed that, indeed, real networks are not random in the sense of random-
graph theory, and they possess a number of extremely interesting properties.

The field of networks is literally exploding, and here I do not have enough
space to pursue the big picture any further. The interested reader is referred
to the reviews previously mentioned and to the popular books [18, 154] as
excellent entry points. Reference [22] contains more advanced material. How-
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ever, to make the previous considerations more quantitative, to the extent that
they can be used for structured populations, we now need to briefly introduce
a number of additional concepts related to graphs .

6.4.1 Some Graph Statistics

Drawing and visualizing a network with up to a few tens of nodes may help in
understanding its structure. However, when there are hundreds or thousands
of nodes this is no longer possible. For this reason, a number of statistics have
been proposed to describe the main features of a graph. Taken together, these
statistics say a lot about the nature of the network, as we shall see.

Four statistics are particularly useful: the average degree, already defined
in Sect. 6.1, the clustering coefficient ; the average path length; and the degree
distribution function. I shall now briefly describe these graph measures. A
fuller treatment can be found in [9, 153].

Clustering Coefficient

There exist two slightly different definitions. The following one is often used.
Consider a particular node j in a graph, and let us assume that it has degree
k, i.e. it has k edges connecting it to its k neighboring nodes. If all k vertices in
the neighborhood were completely connected to each other, forming a clique,
then the number of edges would be equal to

(
k
2

)
. The clustering coefficient

Cj of node j is defined as the ratio between the E edges that actually exist
between the k neighbors and the number of possible edges between these
nodes:

Cj =
E(
k
2

) =
2E

k(k − 1)
. (6.7)

Thus Cj is a measure of the “cliquishness” of a neighborhood: the higher the
value of Cj , the more likely it is that two vertices that are adjacent to a third
one are also neighbors of each other. The average clustering coefficient 〈C〉
is the average of Ci over all N vertices i ∈ V (G): 〈C〉 = (1/N)

∑N
i=1 Ci. The

clustering coefficient of a graph G thus expresses the degree of locality of the
connections.

The clustering coefficient of a random graph is simply 〈k〉 � p, where N
is the total number of vertices and p is the probability that there is an edge
between any two vertices. The clustering coefficient of a complete graph is 1,
since each of a node’s neighbors are connected to each other by definition.

For a regular one-dimensional lattice, C is given by the following formula
[153]:

3(k − 2)
4(k − 1)

, (6.8)
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where k ≥ 2 is the (constant) number of nodes that are connected to a given
node. C is thus independent of N for a regular lattice, and approaches 3/4 as
k increases.

Average Path Length

We denote the shortest path between nodes i, j ∈ V (G) by lij . The average,
or mean, path length 〈L〉 of G is defined as

〈L〉 =
2

N(N − 1)

N∑
i=1

∑
j>i

lij . (6.9)

The calculation of 〈L〉 for a large graph is compute-intensive. For this rea-
son, approximate sampling techniques, rather than complete enumeration, are
used for large N .

The mean path length gives an idea of “how long” it takes to navigate a
network. Random graphs and small-world networks share the property that
〈L〉 scales as log N and thus most vertices in these networks are connected
by a short path. This is not the case in d-dimensional regular lattice graphs,
where 〈L〉 scales as N1/d. For instance, in a ring, 〈L〉 scales linearly with N
and is inversely proportional to k, the number of neighbors.

Degree Distribution Function

The degree distribution P (k) of an undirected graph G is a function that gives
the probability that a randomly selected vertex has degree k. P (k) can also
be seen as the fraction of vertices in the graph that have degree k. Similar
definitions also apply for the in-links and out-links of the vertices in a directed
graph. For a random graph with connection probability p, the probability P (k)
that a random node has degree k is given by

P (k) =
(

N − 1
k

)
pk(1 − p)N−1−k. (6.10)

This is the number of ways in which k edges can be selected from a certain
node out of the N − 1 possible edges, given that the edges can be chosen
independently of each other and have the same probability p. Thus P (k) is
a binomial distribution peaked at P (〈k〉) � Np, as already found in (6.1).
Since this distribution is strongly peaked around the mean, most nodes will
have similar degrees, and low- and high-degree nodes, say a few standard
deviations away from the mean, have a negligible probability, since the tails
fall off very rapidly. Networks having this degree distribution will thus be
rather homogeneous.

But most real networks do not show this kind of behavior. In particular,
in scale-free graphs, which seem to be common in real life [9], P (k) follows a
power-law distribution: P (k) = c k−γ , where c and γ are positive constants.
In these networks, while most nodes have a low degree, there is a small but
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nonnegligible amount of highly connected nodes, and this has a profound
influence on the dynamics of processes structured in this way. Other degree
distributions are also possible, but need not concern us here.

The degree distribution function, together with the other statistics, are
thus a kind of rough “signature” of the type of network and can be helpful in
predicting the main aspects of the properties of the network.

In the following sub-sections, I describe the small-world models that were
used to run the numerical experiments described later in this chapter.

6.4.2 The Watts–Strogatz Model

Although this model was a real breakthrough in the technical sense when
it appeared, today it is clear that it is not a good representation of real
networks such as the World Wide Web or the Internet as it retains many
features of the Erdös and Rényi random graph. In fact, various scale-free
and other types of graphs [10, 111] have been successively proposed as more
faithful description of the kinds of big technological, human, and biological
networks we observe. In spite of this, the Watts–Strogatz model, because of its
simplicity of construction and richness of behavior, still provides an interesting
exercise in artificial systems where there is no “natural” constraint on the type
of connectivity.

(a) (b)

Fig. 6.5. (a) Regular one-dimensional lattice with k = 4. (b) A small-world graph
obtained by randomly rewiring some of the nearest-neighbor links

According to Watts and Strogatz [153, 155], a small-world graph can be
constructed starting from a regular ring of nodes in which each node has k
neighbors (k � N) by simply systematically going through successive nodes
and “rewiring” a link with a certain probability β. When the relevant edge is
deleted, it is replaced with an edge to a randomly chosen node. If rewiring an
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edge would lead to a duplicate edge, it is left unchanged. Figure 6.5 schema-
tically depicts this process for a small ring with k = 4. This procedure will
create a number of shortcuts that join distant parts of the lattice. Shortcuts
are defined to be edges that join vertices that would be more than two edges
apart if they were not connected directly.

Another, nearly equivalent construction starts with a ring lattice with N
nodes and k neighbors per node, and shortcut links are added with a certain
probability between random pairs of nodes, as depicted in Fig. 6.6.

Fig. 6.6. A small-world network obtained by adding a few shortcuts between ran-
dom vertices in a regular lattice

Shortcuts are the hallmark of small worlds and, while 〈L〉 scales logarithmi-
cally in the number of nodes for a random graph, in Watts–Strogatz graphs
it scales approximately linearly for a low rewiring probability β and tends
to the random-graph limit as the probability increases2. This is due to the
progressive appearance of shortcut edges between distant parts of the graph,
which obviously contract the path lengths between many vertices. However,
small worlds typically have a higher clustering coefficient than do random
graphs. Small-world networks have a degree distribution P (k) that is close to
binomial for intermediate and large values of the rewiring probability β, while
P (k) tends to a delta function for β → 0, since in this case we recover the
regular lattice.

6.4.3 The Barabási–Albert Model

Albert and Barabási were the first to realize that real networks grow incre-
mentally and that their evolving topology is determined by the way in which
2 Strictly speaking, the β = 1 case does not correspond exactly to the Erdös–Renyi

random graph. But this is a fine technical point that makes little difference in our
arguments (see Chaps. 2 and 3 of [153] for details).
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new nodes are added to the network. They proposed an extremely simple
model, based on these ideas, that is still useful [9]. One starts with a small
clique (a completely connected graph) of m0 nodes. At each successive time
step, a new node is added such that its m ≤ m0 edges link it to m nodes
already in the graph. When the nodes to which the new node connects are
chosen it is assumed that the probability π that a new node will be connected
to node i depends on the degree ki of i such that nodes that already have
many links are more likely to be chosen over those that have few. This is
called preferential attachment and is an effect that can be observed in real
networks. The probability π is given by

π(ki) =
ki∑
j kj

,

where the sum is over all nodes already in the graph. Barabási and Albert
have shown that the model evolves into a stationary scale-free network with
a power-law probability distribution of the vertex degree P (k) ∼ k−γ , with
γ ∼ 3.

There exist other, more general and more refined models that are capable of
producing graphs with a power-law degree distribution (see e.g. [22]). However,
the basic Barabási–Albert model is enough for our initial investigation.

6.5 Selection Intensity in Small-World Networks

In all the experiments described below, a population of size of 1024 and a total
number of edges of the same order as that of a random graph with q = 0.01
were used. The selection mechanism employed was uniform selection in all
cases. All the curves presented are averages of 100 independent runs.

6.5.1 Watts–Strogatz Model

For the simulations, Watts–Strogatz small-world networks with 1024 individ-
uals were generated starting from a ring with k = 10 neighbors, i.e. a regular
radius-5 one-dimensional lattice. In this way the mean number of neighbors
is almost equal to that of a random graph with q = 0.01.

Figure 6.7 shows growth curves with synchronous update for different values
of the rewiring probability β and for the original ring. The trend is clear: when
β is increased from 0 (the ring case) to 0.8 (topologies approaching that of a
random graph), the selection pressure increases slowly at first, and then very
quickly at around β = 0.005. This can be easily understood if one takes into
account how the mean path length and the clustering coefficient vary in a
small-world graph. From Fig. 6.8, one can see that for β around 0.005 there is
a sudden drop in the average path length from values that pertain to a lattice
to values that are close to that of a random graph. This means that, suddenly,
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Fig. 6.7. Growth curves for synchronous update with different values of the rewiring
probability β. The rightmost curve is for a ring (β = 0). The leftmost curve corre-
sponds to β = 0.8, which is almost in the random-graph region
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Redrawn from [153].

many short paths become available through the network between most nodes,
which explains the higher growth rate.

Figure 6.9 depicts growth curves for synchronous update, and for the two
asynchronous policies in small worlds with β = 0.005. As in the case of panmic-
tic populations and random graphs, new random sweep is faster than uniform
choice, which in turn is faster than synchronous update. The experimental
takeover times are to be compared with those of random graphs with the same
average number of edges, i.e. Fig. 6.2 d. Clearly, the corresponding small-world
graphs induce a lower global selection pressure.
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Fig. 6.9. Growth curves for synchronous, new-random-sweep, and uniform-choice
asynchronous update. The rewiring probability is β = 0.05. Note the change in the
scale of horizontal axis with respect to Fig. 6.7

6.5.2 Barabási–Albert Model

Scale-free graphs were generated according to the Barabási–Albert model de-
scribed in Sect. 6.4.3. The starting point was a clique of m0 = 14 nodes, and
1024 − 14 = 1010 individuals were added, each creating m = 10 edges with
preferential attachment, following the algorithm.

Figure 6.10 shows the behavior of the growth curves for the three update
policies used here. For the position of the initial best individual, any vertex is
equally likely. The order of the curves is the same as that observed for random
graphs and Watts–Strogatz small-world networks. The inversion in the last
part of the uniform-choice curve is due to the fact that cells are chosen with
replacement, and thus the last few nonconquered individuals are increasingly
unlikely to be chosen. Apart from this effect, the takeover times are very close
to those observed for the corresponding random graphs. This confirms that
scale-free graphs are a topology in which propagation is at least as fast as in
random graphs, which, for example, has important consequences for infection
rates [111].

But scale-free graphs have other surprising properties. In particular, those
networks are extremely tolerant to attacks on randomly chosen target nodes,
which is due to the fact that there are few important (highly connected)
nodes and many unimportant (sparsely connected) ones. On the other hand,
deliberate suppression of highly connected nodes is likely to produce a lot of
damage [9]. The different status of highly connected nodes was demonstrated
in an experiment where the initial best individual was always placed on a
“hub” node (see Fig. 6.11). In this case the takeover time is very short, shorter
than the random-graph case (see Fig. 6.2 and Table 6.1). This is also known
to happen in infectious processes, where scale-free communication patterns
have the effect of eliminating the so-called infection thereshold [111].
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Fig. 6.10. Growth curves for synchronous, new-random-sweep, and uniform-choice
asynchronous update in scale-free graphs. The initial best individual was uniformly
distributed at random among the nodes
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Fig. 6.11. Growth curves for synchronous evolution in scale-free graphs when the
initial best individual is placed on a highly connected node

Table 6.2 summarizes the numerical results for the takeover times in Watts–
Strogatz and scale-free topologies for the synchronous and the two asyn-
chronous update methods.

It is clear that the effect of small-world topologies on the dynamical proper-
ties of processes taking place on a network could be exploited in evolutionary
computation by letting the topology adapt or self-organize dynamically in or-
der to control the selection pressure, and thus the explorative or exploitative
characteristics of the algorithm.
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Synchronous Asynchronous NRS Asynchronous UC

Ring (β = 0) 279.64 (9.35) 201.51 (9.03) 229.30 (10.54)
WS (β = 0.001) 168.89 (45.93) 116.50 (27.12) 135.15 (35.10)
WS (β = 0.005) 80.16 (14.47) 60.18 (8.75) 70.43 (12.08)
WS (β = 0.02) 45.96 (4.32) 36.58 (4.15) 41.31 (4.27)
WS (β = 0.8) 19.16 (1.69) 15.43 (1.76) 20.50 (2.46)

BA 17.94 (2.59) 14.60 (2.66) 19.77 (3.55)

Table 6.2. Experimental mean takeover times (with corresponding standard devi-
ations) for the three update methods and for the small-world topologies discussed
in the text. WS stands for Watts–Strogatz and BA stands for Barabási–Albert. The
experimental results are obtained over 100 independent runs. Population size is 1024
in all cases.

6.6 Summary

In the first part of this chapter, using general stochastic models for the growth
of the best individual, we have seen that populations structured as random
graphs behave in the same way as panmictic populations of the same size,
except when the graph is very sparse. A practical consequence of this result is
that it appears unnecessary to use the whole population as a selection pool,
given that the random-graph case, using a fraction of the population, shows
the same behavior as does the panmictic one. The models and experiments
also confirm the results of Chap. 4 for regular lattices, i.e. that the selection
pressure can be varied by using different updating schemes.

In the second part of the chapter we examined experimentally the growth
of the best individual in two families of networks that are neither regular nor
random: the Watts–Strogatz model and the Barabási–Albert model. It ap-
pears that the propagation properties of an individual and the global induced
selection pressure are qualitatively similar to those found in panmictic popu-
lations and random graphs. However, the inhomogeneity of these small-world
networks opens up new possibilities for evolutionary computation when the
nature of each given node is taken into account. Thus, for example, hubs in
scale-free networks largely determine the dynamical properties of the pop-
ulation. By controlling these features, or allowing the population network
to self-organize, it is possible to change the selection pressure and thus the
characteristics of the algorithm within a wide range. Interesting evolutionary
algorithms could be designed along these lines.
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Coevolutionary Structured Models

7.1 What Is Coevolution?

Straight evolutionary algorithms use the analogy of a single-species population
and a suitable definition of a fitness function to rank and select the individ-
uals in the population. The situation in nature is much more complex than
what this simple metaphor seems to suggest. Indeed, in biological populations
there is a continuous interplay between individuals of the same species, and
also encounters and interactions of various kinds with other species. The en-
vironment, too, does not stand still, but is continuously changing. This makes
the familiar view of a fixed fitness landscape (see, for instance, [86] and ref-
erences therein), in which individuals “climb” through the landscape in order
to improve their fitness, hardly adequate. The problem is that the landscape
as seen by a given individual is being continually changed by the other indi-
viduals and species, and it is not at all clear how a suitable fitness function
could be defined.

The points at issue can be clearly seen when one observes such ecological
systems as symbiosis, host–parasite systems, and prey–predator systems, in
which either organisms mutually support each other, one exploits the other,
or they fight against each other. For instance, mutualistic relations between
plants and fungi are very common. The fungus invades and lives among the
cortex cells of the secondary roots and, in turn, helps the host plant absorb
minerals from the soil. Another well-known example is the “association” be-
tween the Nile crocodile and the Egyptian plover, a bird that feeds on any
leeches attached to the crocodile’s gums, thus keeping them clean. This kind
of “cleaning symbiosis” is also common in fish.

Other modes of coevolution involve competitive interaction between two
specific species. The Plethodon salamander is a good example: in the Great
Smoky Mountains, two species of salamander compete strongly, as evidenced
by the fact that each species will increase its population size if the other is
removed. Another classic example is that of foxes feeding on rabbits.
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The customary analogy here is the coevolutionary arms race: a plant has
chemical defenses, an insect evolves the biochemistry to detoxify these com-
pounds, the plant in turn evolves new defenses that the insect in turn ”needs”
again to detoxify, and so on. A less innocent example is the coevolution of
pathogens in the face of improvements in the effectiveness of antibiotics.

Now, how can we harness the concepts of coevolution for solving problems
for which it is difficult or impossible to define a suitable fitness function? A
good example is the playing of games. In games such as chess and checkers,
there are so many different possible moves that it is practically impossible to
exhaustively evaluate all the possible available strategies, given the possible
moves and countermoves. One approach is simply to evaluate a player’s fitness
relative to the other, in a two-player game, as being simply the outcome of
the game: won, lost, or perhaps drawn. In this way, a player can iteratively
learn, by punishment and reward, to play a better game, without any direct
external guidance. This example would be worth pursuing further, but here I
would like only to stress the principle: when there is no clear fitness function, a
useful strategy is simply to coadapt to the opponent’s moves. This situation is
similar in spirit to the coevolutionary interactions in nature described above.
The interested reader will find an excellent discussion of the issues, and many
ideas to harness for coevolutionary problem-solving in Chap. 14 of Michalewicz
and Fogel’s book [100].

Following an established pattern, I shall divide coevolutionary methods
into two main classes: cooperative coevolution and competitive coevolution.
This binary classification is certainly simplistic for biological systems, but it
is useful for our purposes in the context of artificial evolution. Cooperative
coevolutionary models are artificial evolutionary systems in which a number
of different species or groups, each representing a different part of a problem,
cooperate in order to find partial solutions, which are then combined in some
way to solve the global problem. In competitive coevolution, on the other
hand, the different species, populations, or groups prosper or decay at the
expense of each other, as typically exemplified by coevolutionary game-playing
(see above). Again, the reader is referred to [100] for a fuller discussion.

Most structured coevolutionary algorithms are of the cellular type. Thus,
in keeping with the spirit of the main theme of this book, in this chapter
we focus on coevolutionary problem-solving using that kind of population
topology. But before doing that, a brief description of a cooperative approach
is provided next.

7.2 Cooperative Coevolution

There are several examples of artificial cooperative coevolution in the litera-
ture. One of the best known is Potter and De Jong’s coadapted-components
architecture [118]. When coadapted components are used, the problem is de-
composed into a number of species that each solve a portion, or component,
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of the global task. The decomposition of the problem is in general not known
from the start, and the evolutionary system must be able to address this is-
sue, by using prior knowledge or favoring the emergence of subcomponents.
A similar decomposition problem appears in genetic programming, for which
techniques that automatically identify blocks of useful code that can be en-
capsulated and reused have been proposed [122].

A second issue has to do with relationships between components. In the eas-
iest case, components are independent of each other, and can thus be evolved
in separate breeding populations. But in most problems of interest there are
interdependences among the parts, and these interactions are handled by the
architecture by evolving the species in parallel and evaluating them in the
context of each other.

In Pott and De Jong’s system, each species is evolved in its own popula-
tion and adapts to the environment through the repeated application of an
EA. But the number of species is not fixed: species can disappear when they
seem not to contribute enough to the global goal, and new species can be
created. Communication between populations (species) is limited to an occa-
sional broadcast of representative individuals.

There are two levels of credit assignment: at the species level, the fitness
of an individual is evaluated keeping the representatives of the other species
fixed. On the other hand, when an evaluation of the level of the contribution
of one species to the global goal is needed, individuals from different species
are merged within a shared-domain model to form a composite solution to
the target problem.

Finally, in order to be able to apply the model to complex cases in which
components need to be represented in different ways, for example in robotics
and other fields, heterogeneous representations are supported, such as real
parameter encoding, rule systems, and so on.

One interesting feature of the coadapted-components architecture is the
natural mapping that there is between the different populations and an island
model. Indeed, each species has its EA and communication is sparse, making
a multipopulation model, possibly heterogeneous, an obvious one.

This coevolutionary architecture has been applied with success to several
problems ranging from function optimization to evolving neural networks,
learning sequential decision rules, and more. A recent detailed account of the
system’s philosophy can be found in [118] and references therein.

7.3 Competitive Coevolution: Hosts and Parasites

The classical work on competitive coevolution is Hillis’s pioneering study of
sorting networks [76, 77]. Sorting networks are comparison networks that
sort their inputs i.e., for any input sequence, the output sequence is mono-
tonically increasing [34]. Thus, if (a1, a2, . . . , an) is the input sequence and
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(b1, b2, . . . , bn) is the output sequence of the network then we have b1 ≤
b2 . . . ≤ bn for every input sequence.

a₁
a₂
a₃
a₄
a₅
a₆
a₇
a₈
a₉
a₁₀
a₁₁
a₁₂
a₁₃
a₁₄
a₁₅
a₁₆

Fig. 7.1. A coevolved network that sorts 16 numbers using 61 comparisons. Redrawn
from [77]

The size of the sorting network depends on the number of elements in the
list to be sorted. Figure 7.1 depicts graphically one such network for the case
n = 16, the case that was studied by Hillis. Each horizontal line represents
an element of the list to be sorted. Each vertical line represents a comparison
to be made between the elements indicated. If the elements are out of order,
the network will swap them. Comparisons and exchanges proceed from left
to right in the figure, and comparisons in the same column can be made in
parallel if truly parallel hardware is used.

A popular problem in the 1960s was to determine the minimum number
of comparisons needed for correctly sorting n inputs. The case n = 16 was
studied in detail, and soon people found networks that did the job with 65
comparisons, then 63 and 62, and, finally, Green found a network that only
needed 60, which is the one displayed in Fig. 7.2. This is the best result known
to date, but no one has shown yet that it is a lower bound.

As it happens, at the end of the 1980s, Hillis had just finished co-designing
and building a massively parallel computer, the Connection Machine CM-2,
and commercialized it through a spin-off company. This supercomputer was
very famous at the time, for it implemented several innovative ideas in com-
puter architecture. Today, the Connection Machine no longer exists, and this
kind of single-instruction-stream, single-data-stream data-parallel computer
is restricted to particular computational niches. However, the machine had
a distinctive advantage: representing regularly structured networks was very
easy with this architecture, by distributing network points over the many sim-
ple processors of the machine, one or a few points per processor. The physical
machine’s communication network, though not as simple as a regular lattice
– it was a hypercube – was such that points that were neighbors in the lattice
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Fig. 7.2. The best sorting network known. It sorts 16 elements using 60 comparisons.
Redrawn following [77]

were also stored in neighboring processors at a single vertex of the hypercube.
Thus, the machine was eminently suited for homogeneous computational tasks
on grids such as cellular automata and discretized partial differential equa-
tions. Hillis took advantage of this by using a structured population from the
beginning.

In his experiments, Hillis first used a large population of 64 536 sorting net-
works arranged in a two-dimensional torus topology. The initial population
was random except for the fact that part of the chromosome was initialized in
such a way as to represent the exchanges that are common to all known sort-
ing networks designed. The encoding of a sorting network is rather involved
and will not be reported here. Hillis designed crossover and mutation opera-
tors that were tailored to the representation in order to always produce valid
networks as offspring. Each individual was ranked according to its percent-
age of success on the 216 possible binary sequences, since a sorting network
that correctly sorts all possible 2n binary sequences will correctly sort any
numerical sequence [34]. Actually, Hillis used a random sample of the possi-
ble test cases to attribute a score to a network. Selection and crossover were
local. However, instead of using a straight von Neumann or Moore neighbor-
hood, Hillis used short random walks around each individual to select a mate.
So, the algorithm was local but the neighborhood was irregular. Using this
choice, the best network found had 65 exchanges, a relatively disappointing
result. Hillis observed that good solutions spread through the grid and formed
patches, separated by crosses formed by bad individuals. This is indeed the
usual behavior of cellular EAs.

Two major causes for the relative inefficiency of the process were identified:
one was the existence of local optima from which it was difficult to escape,
and the second was related to the test cases. After a few generations, most of
the test cases were sorted correctly by almost all networks, which means that
the fitness differences were small, thus providing little selection pressure on
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the population. Hillis then decided to make the test cases themselves evolve.
In another series of experiments, he added a second population evolving on
the same grid as the networks. The second population was made up of indi-
viduals which each were a small group of 10 to 20 test cases. Hillis’s biological
inspiration was that of a host–parasite or prey–predator coevolution. In the
artificial case, the parasites were the test cases, and the hosts were the net-
works. Networks were scored according to how well they sorted the test cases,
whereas the parasites were scored for their capabilities to make the networks
fail to sort the test cases, i.e. the two fitness functions were complementary.

This coevolutionary algorithm relieves both of the problems found with the
straight evolution of networks only. The parallel evolution of the population
of parasites makes it more difficult for the system to remain stuck in a local
optimum since, as soon as a network becomes rather good at sorting the
test cases, it has to make a leap forward, given that the test cases are also
improving, and thus making its task harder. The steady evolution of parasites
– alias test cases – also means that the test cases that remain in the population
are the “hard” ones, those that challenge the sorting ability of the networks
better. By harnessing this arms race between networks and test cases Hillis
was able to coevolve a network that needed only 61 exchanges, very close to
the known best of 60. The resulting network is shown in Fig. 7.1.

Aside from the fact that Hillis’s result was valuable in itself, it was above
all one of the first that showed convincingly that coevolutionary ideas from
biology can be profitably used in problem-solving with artificial evolution.
This work thus paved the way for more sophisticated artificial coevolutionary
systems, which have since been used in several areas with success (see [100]).

7.4 A Case Study: Coevolution of Cellular Automata

Cellular automata (CAs) are discrete dynamical systems that have been used
successfully for simulating physical, chemical, social, and biological systems
that are difficult or impossible to model using differential equations or other
standard mathematical methods [31]. CAs are constructed from many identi-
cal or similar simple components, but their collective behavior may be fairly
complex. They are thus an ideal means for investigating basic emergent com-
putational capabilities and other properties of complex systems.

A general problem is to find architectures for a decentralized complex sys-
tem, such as a CA, that behave in specified ways. However, designing CA
rules such that a given macroscopic behavior emerges is not a simple task.
Ingenuity and trial-and-error can help, but there is no general methodology
that can be applied in all cases.

Evolutionary and coevolutionary algorithms have been quickly recognized
as being effective in taking that burden away from the designer by letting the
power of artificial evolution automatically find solutions to the problem of the
design of CA rules. The work of Packard was one of the first that advocated
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this idea [112], followed by that of Mitchell and coworkers [103, 102], and
Sipper [132, 134]. Here we shall describe only the evolution of CA rules. But
both the rules and the connectivity of the network of automata could be made
to evolve, giving rise to arbitrary graphs of the kinds described in the previous
chapter [136, 147].

7.4.1 Cellular Automata

CAs are dynamical systems in which space and time are discrete. A standard
lattice CA consists of an array of cells, each of which can be in one of a finite
number of possible states. Here we shall consider only boolean automata, for
which the cellular state s ∈ Σ = {0, 1}. The regular cellular array (lattice)
is d-dimensional, where d = 1, 2, 3 is used in practice. In a one-dimensional
lattice, the topology used here, a cell is connected to r local neighbors (cells)
on either side, where r is referred to as the radius (thus, each cell has 2r + 1
neighbors, including itself).

CAs are usually updated synchronously in discrete time steps, according to
a local rule, identical for all cells. The state of a cell at the next time step
is determined by the current states of the surrounding neighborhood of cells,
including the cell itself:

st+1
i = f(st

i−r, . . . , s
t
i, . . . , s

t
i+r), f : Σ2r+1 → Σ,

where st
i denotes the value of site i at time t, f(.) represents the local transi-

tion rule, and r is the radius of the CA. The term configuration refers to an
assignment of ones and zeros to all the cells at a given time step. It can be
described by st = (st

0, s
t
1, . . . , st

N−1), where N is the lattice size. Often CAs
have periodic boundary conditions st

N+i = st
i.

Configurations evolve in time according to a global update rule Φ, which
applies in parallel to all the cells: st+1 = Φ(st).

This is the model investigated in this chapter, together with a simple ex-
tension termed nonuniform cellular automata [134]. Such automata function
in the same way as uniform ones, the only difference being that the cellular
rules that need not be identical for all cells.

7.4.2 The Majority Task

Evolutionary algorithms have been used to help evolve suitable rules for sev-
eral CA tasks. Here we concentrate on a theoretically important example, the
density task, also called the majority task. The majority task is a prototyp-
ical distributed computational task for CAs. For a finite CA of size N , it is
defined as follows. Let ρ0 be the fraction of ones in the initial configuration
(IC) s0. The task is to determine whether ρ0 is greater than or less than 1/2.
If ρ0 > 1/2 then the CA must relax to a fixed-point configuration of all ones;
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otherwise it must relax to a fixed-point configuration of all zeros, after a num-
ber of time steps of the order of the lattice size N (N is odd to avoid the
case ρ0 = 0.5, for which the result is undefined). This computation is triv-
ial for a computer having a central control. Indeed, just scanning the array
and adding up the number of, say, bits equal to 1 will provide the answer
in O(N) time. However, this is nontrivial for a small-radius one-dimensional
CA, since such a CA can only transfer information at finite speed, relying
on local information exclusively, while the density is a global property of the
configuration of states [103]. Figure 7.3 shows the operation of a CA obtained
through artificial evolution.

Fig. 7.3. The operation of an evolved one-dimensional, radius-3 CA for the density
task. The CA cell states are represented horizontally (black stands for 1 and white
for 0). Time increases down the page. The CA rule was obtained through artificial
evolution by Mitchell et al. [102]. The density ρ0 is 0.416 and the lattice size N is
149

It has been shown that the density task cannot be solved perfectly by a
uniform, two-state CA with a finite radius [91], although a slightly modified
version of the task can be shown to admit a perfect solution by such an
automaton [28] or a combination of automata [59].

The performance P of a given CA on the majority task is defined as the
fraction of correct classifications over 104 randomly chosen ICs. The ICs are
sampled according to a binomial distribution (i.e. each bit is independently
drawn with a probability 1/2 of being 0). Clearly, this distribution is strongly
peaked around ρ0 = 1/2 and thus it creates a difficult case for the CA to
solve.

The lack of a perfect solution does not prevent one from searching for im-
perfect solutions of as good a quality as possible, given also that no upper
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bound on classification accuracy has been found. In general, given a desired
global behavior for a CA – for example, capability to solve the density task
– it is extremely difficult to infer the local CA rule that will give rise to
the emergence of a desired computation, owing to possible nonlinearities and
large-scale collective effects that cannot in general be predicted from the local
CA updating rule alone. Since exhaustive evaluation of all possible rules is out
of the question except for elementary (d = 1, r = 1) automata, one possible
solution to the problem is to use evolutionary algorithms, as first proposed by
Mitchell et al. [102, 103] for uniform CAs and by Sipper for nonuniform ones
[133].

The density task is actually a form of machine-learning problem, since the
CA must approximately solve the problem on the basis of only a relatively
small sample of ICs. given that for N = 149, the value used here, there are
2149 possible ICs. There is thus a problem of generalizing the results to unseen
ICs, and there is also the question of scalability of the task: how does a given
evolved CA rule, or combination of rules in the nonuniform case, perform as
N becomes larger and larger?

7.5 Artificial Evolution of CAs for the Majority Task

The early work of Mitchell et al., employing a standard GA, showed that
evolution of CAs for the density task is possible but it is hard (see [35] for
a recent review). Indeed, only a small fraction of the evolutionary runs gave
rise to good-quality automata. This is an indication either that the problem
space is difficult to search, or that a standard GA is not entirely suitable
for the search, or both. Actually, recent research has shown that the space
of automata is indeed a hard one to search, and thus any heuristic will face
difficulties [151].

Mitchell and Crutchfield’s group has been able to identify three main types
of CA strategy that a GA tends to evolve. The first type is called “default
strategies”; these classify all bit strings into a single density class, either the
class of all zeros or all ones. Of course, these rules have a performance of
around 0.5 since about half of the random IC sample will be classified cor-
rectly. They are thus no better than simply classifying an IC by throwing
an unbiased coin. The second type is made up of CAs that employ “block-
expanding” strategies. Block-expanding strategies are a little better than de-
fault strategies, as they rely on the presence on sufficiently large blocks of
zeros or ones in the IC. If such blocks exist, these strategies tend to converge
to the corresponding fixed point. Since the existence of sizable blocks of ze-
ros or ones is correlated with the density of the IC, there is more than a 0.5
chance that the CA will converge to the right fixed point. Block-expanding
strategies rely mainly on local information and are not robust in global terms.
Both default and block-expanding strategies are easily evolved, but they are
unsatisfactory.
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In a small number of cases, a third type of much more sophisticated strate-
gies have been identified that are able to achieve the desired global coordi-
nation required for approximately solving the density task with high efficacy:
the “embedded-particle” strategies. These strategies rely on the existence of
spatio-temporal propagating patterns that can be made visible after filter-
ing the “uninteresting” regular background. Crutchfield and coworkers have
shown how global CA computations can be interpreted in terms of those prop-
agating particles and their interactions for some global CA tasks, including
the majority task. (see [35] and references therein for a detailed explanation).

In spite of the difficulty of the problem, evolutionary algorithms have been
relatively successful on the density task, and several groups have been able to
find CAs with a performance of around 0.8 or more. This work is discussed
in detail in [35] and will not be reported here. Some of the best CAs were
obtained with coevolutionary algorithms. For example, Juillé and Pollack,
using a coevolutionary approach, obtained P = 0.86 for the standard ring size
N = 149 which, to the best of the author’s knowledge, is the best result at
the time of writing [85].

Despite the success of coevolutionary algorithms, it has been observed that
sometimes they are unable to provide continuous progress in the performance
of the populations, giving rise to stagnation and lockup into average perfor-
mance states or to fluctuations among relatively mediocre solutions. Accord-
ing to [85], this may be due to an inability of the changing environment to
provide useful information for the learners to be able to further improve their
behavior. One of the main reasons for this state of affairs is the phenomenon
known by the colorful name of “Red Queen effect” [115]. Roughly speaking,
the effect consists of the following: individuals are evaluated in a constantly
changing environment of fitness cases; as a result, they tend to perform well
against the current population of test cases, forgetting some of the traits that
made them effective on other groups of test cases seen before. Thus, the two
populations perform well against each other but they are less effective against
opponents chosen from outside. In other words, they have poor generalization
capabilities. It is as if the individuals did not care about solving the origi-
nal optimization problem, and were busy just finding ways to beat current
good representatives of the other population. Several remedies have been sug-
gested to improve the effectiveness of straight competitive coevolution. Here,
in keeping with our emphasis on structured EAs, I shall describe coevolution-
ary approaches that make use of spatially structured coevolving populations.

7.5.1 Coevolving Uniform CAs for the Majority Task

In [113], Pagie and Hogeweg compared spatially structured coevolving popu-
lations with completely mixing ones for the purpose of evolving good solutions
to the majority-task problem. In both cases they used two antagonistic popu-
lations, one representing two-state, radius-3 CAs, while the other was formed
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from the initial configurations that the CAs worked with. This is entirely
analogous in spirit to Hillis’s host–parasite approach for sorting networks de-
scribed above, with the CAs playing the role of hosts and the ICs that of
parasites.

As in the original work of the Santa Fe group, in Pagie and Hogeweg’s study
both CAs and ICs are represented as bit strings. A CA rule is encoded as a
bit string containing the next-state (output) bits for all possible neighborhood
configurations, listed in lexicographic order; for example, for CAs with r = 1,
the genome consists of eight bits, where the bit at position 0 is the state to
which neighborhood configuration 000 is mapped, and so on until bit 7, corre-
sponding to neighborhood configuration 111. The rule number is the number
that is obtained when the string of the rule’s output bits is interpreted as a
decimal number. In the present case, with a radius-3 CA (seven neighbors),
the rule table is of size 27 = 128.

The topology of the two populations is a two-dimensional lattice of size
30× 30 with periodic boundary conditions, with each lattice point represent-
ing one CA and one IC. The population of automata starts with random
CAs represented by bit strings generated according to a binomial distribu-
tion, while the ICs are initialized with all-zero bit strings. Evolution is done
synchronously. In the mixing model, the topology of the two populations is
the same but the individuals are randomly shuffled in the grid at each time
step, which approximates a panmictic situation.

The fitness evaluation and genetic operators are local. The fitness of a CA
is based on the nine ICs in its Moore neighborhood. CAs are scored by run-
ning them on the nine neighbor ICs for about 2N steps each. Credit is given
only in the case of successful classification. With respect to the standard GA
approach, where each CA is evaluated on hundreds of ICs, here the fitness
evaluation is sparse. This does not seem to be a drawback, however. In fact,
sparse fitness evaluation for both the CAs and the ICs seems to be a positive
factor for the evolutionary process, as was the case in Hillis’s work. The fitness
of an IC is based on the CA located in the same cell only.

Previous studies using coevolution for the majority task showed a tendency
for the ICs to quickly evolve toward densities around 0.5. This is understand-
able, since the ICs are trying to make the task of the classifier CAs harder and
harder. To avoid this problem, Pagie and Hogeweg used a density-dependent
fitness function that gives more weight to low and high density values.

Selection is probabilistic in Pagie and Hogeweg’s study, based on the rank of
the nine individuals in the Moore neighborhood of a given individual. Each CA
in the population is replaced by the winner of a tournament including that CA
itself and its eight neighbors, using the rank order of the individuals. ICs are
selected in the same way. After selection and replacement, bit-flip mutation
is applied to both CAs and ICs with a rate of 0.0016 per bit for CAs and
0.0034 per bit for ICs. These values correspond to an expected number of 0.2
mutation events for CAs and 0.5 for ICs, when multiplied by the population
size (900). Crossover is not used.
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The results of this empirical investigation were rather interesting. The mix-
ing model was never able to evolve CAs that employed sophisticated classifica-
tion strategies, and the best performance values were always around 0.5–0.6
and were obtained with default or block-expanding strategies. The perfor-
mance values of the best CAs coevolved in the spatially local model were
much better, around 0.75, and corresponded to CAs that used more complex
particle-based strategies to solve the problem.

The evolutionary dynamics observed when individuals remained localized
in space and when they were globally mixed at each time step were extremely
different. Red Queen dynamics were seen to occur in the mixing model, char-
acterized by oscillations of the types of CAs and ICs that were present in
the population, and an ensuing loss of efficiency in the search. On the other
hand, in the spatially embedded coevolutionary model, spatial patterns could
form with well-defined frontiers that changed slowly for both the CA and the
IC population. In this case, the interactions between individuals remain local
in space and time, giving rise to many competitions between local species in
the patches. This enhances the efficiency of the evolutionary process in the
sense of the optimization and generalization capabilities of the resulting CAs.
Diversity measures in the two models support these findings. Once again, it
has been empirically confirmed that the spatial structure of populations may
promote diversity and speciation for “free”, so to speak, without the use of
complicated explicit sharing and modified-fitness techniques.

Pagie and Hogeweg’s investigation shed some light on the mechanisms at
work in a spatial coevolutionary algorithm with two antagonistic species, but
was not intended to find highly optimized classifiers for the majority-task
problem. In a follow-up study, Pagie and Mitchell [114] compared the spatially
embedded coevolutionary model described above with a straight evolutionary
spatial model of the same kind. The size of the grids was the same, 30 × 30,
but in the second model only the CAs evolved. The other EA parameters,
including the fitness evaluation, were the same as in the previous study, except
that, in the evolutionary setting, the population of ICs did not evolve but was
generated anew at each time step, being selected at random from a uniform
density distribution in which each density in [0, 1] was equally likely. By the
way, this is how ICs were produced at each generation in the original panmictic
GA [103] .

Pagie and Mitchell found that the coevolutionary spatially structured model
led to a much higher frequency of evolution of CAs employing sophisticated
strategies than did the standard structured evolutionary algorithm. In fact,
out of a total of 100 runs, coevolution found particle strategies 86 times,
while straight evolution was successful only two times. Of course, both models
evolved default and block-expanding strategies in all runs. These results are
striking: the evolutionary model is nearly always unable to make the transition
to effective density classification strategies, while the coevolutionary model
does so most of the time.
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Pagie and Mitchell attributed the difference between the two models to a
mechanism related to the way in which ICs are generated. In the evolutionary
model, block-expanding CAs can prosper in the population because they are
evaluated on ICs that are randomly generated according to a uniform distri-
bution of densities. However, these CAs generalize poorly when run on ICs
drawn from a binomial distribution. In the coevolutionary model, on the other
hand, block-expanding CAs can be fooled and exploited by the population of
coevolving ICs. This occurs because an IC with low density of zeros or ones
can incorporate a “deceptive” block of bits of the same type, which would
lead block-expanding strategies to reach the wrong fixed point and thus to
misclassify the IC. This effect lowers the fitness of the current generation of
block-expanding CAs and pushes the system to discover more sophisticated
strategies that do not fall into the trap of deceptive blocks. More generally,
Pagie and Mitchell remark that in the coevolutionary model, ICs evolve in
such a way as to exploit the population of CA rules in the case of particle
strategies also. In order to evaluate this effect, in another set of runs they
modified the coevolutionary model such that no particular bit patterns could
form. This was done by representing ICs as density values, rather than explicit
bit strings. The modified coevolutionary model was less efficient than the orig-
inal one: particle strategies were evolved in 23 out of 100 runs instead of 86%
of the time. However, it was still more efficient than the plain evolutionary
model.

The higher efficiency of the original coevolutionary model has a downside
in that the out-of-sample performance P of coevolved CAs is somewhat lower
than for CAs coevolved with the modified model. Indeed, the average P value
was 0.76 for the former and 0.80 for the latter. The maximum values reached
about 0.85. The explanation is that in the original model, ICs evolve particular
bit patterns which exploit weaknesses in the CA population. As a result, the
CAs also undergo selection to adapt to these ICs. But these strings, being
atypical, are not present in large numbers in the out-of-sample ICs, on which
performance is ultimately measured.

7.5.2 Coevolving Nonuniform CAs for the Majority Task

Sipper [132, 133] introduced a coevolutionary approach for evolving nonuni-
form CAs for several computational tasks, including the density task. Nonuni-
form cellular automata relax the constraint that each cell contains the same
rule, allowing different rules for different cells. The use of nonuniform CAs
opens up new possibilities for global cellular computing, increasing the de-
grees of freedom that evolution can play with. In fact, for a one-dimensional
CA of size N = 149 and radius 3, the search space has a size 2128 for uniform
CAs, while the size increases to (2128)149 in the case of a nonuniform grid, a
huge search space, vastly larger than the search space of uniform CAs. It is a
remarkable fact that, in spite of this more than astronomical size, structured
coevolution manages to find high-performance solutions for the density task
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and for other problems. This may be due in part to the fact that the increased
freedom in choosing cell rules makes many different nonuniform CAs more or
less equally good at the task, and we shall see that this added freedom in
cell rules will permit a reduction of the CA radius. The coevolutionary ap-
proach suggested by Sipper is called the cellular programming algorithm and
is explained below.

The Cellular Programming Algorithm

A cell’s rule table is encoded as a bit string in Wolfram’s notation, as ex-
plained at the beginning of Sect. 7.5.1. Rather than employing a population
of evolving, uniform CAs, as with genetic algorithm approaches, cellular pro-
gramming involves a single, nonuniform CA of size N , with cell rules initialized
at random. Initial configurations are then generated at random, in accordance
with the task at hand, and for each one the CA is run for M = O(N) time
steps. Each cell’s fitness is accumulated over C initial configurations, where a
single run’s score is 1 if the cell is in the correct state after M iterations, and
0 otherwise. After every C configurations, evolution of rules occurs by appli-
cation of crossover and mutation. This evolutionary process is performed in
a completely local manner, where genetic operators are applied only between
directly connected cells. It is driven by nfi(c), the number of fitter neighbors
of cell i after c configurations. The pseudocode of the algorithm is shown in
Fig. 7.4.

Crossover between two rules is performed by selecting at random (with
uniform probability) a single crossover point and creating a new rule by com-
bining the first rule’s bit string before the crossover point with the second
rule’s bit string from this point onward. Mutation is applied to the bit string
of a rule with a probability of 0.001 per bit.

There are two main differences between the cellular programming algorithm
and the standard genetic algorithm. (a) The latter involves a population of
evolving, uniform CAs; all CAs are ranked according to fitness, with crossover
occurring between any two individuals in the population. Thus, while the CA
runs in accordance with a local rule, evolution proceeds in a global manner.
In contrast, the cellular programming algorithm proceeds locally in the sense
that each cell has access only to its locale, not only during the run but also
during the evolutionary phase, and no global fitness ranking is performed. (b)
The standard genetic algorithm involves a population of independent problem
solutions; the CAs in the population are assigned fitness values independent
of one another, and interact only through the genetic operators in order to
produce the next generation. In contrast, in cellular programming the CAs in
the grid coevolve since each cell’s fitness depends upon its evolving neighbors.
This may also be considered a form of symbiotic cooperation. Actually, the
approach can be considered both as a cooperative coevolutionary approach
and, at the same time, a competitive one in the sense that rules are also
competing for “room” in the lattice.
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for each cell i in CA do in parallel
initialize rule table of cell i
fi = 0 { fitness value }

end parallel for
c = 0 { initial configurations counter }
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel

if cell i is in the correct final state then
fi = fi + 1

end if
end parallel for
c = c + 1
if c mod C = 0 then { evolve every C configurations}

for each cell i do in parallel
compute nfi(c) { number of fitter neighbors }
if nfi(c) = 0 then rule i is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,

followed by mutation
else if nfi(c) = 2 then replace rule i with the crossover of the two fitter

neighboring rules, followed by mutation
else if nfi(c) > 2 then replace rule i with the crossover of two randomly

chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)

end if
fi = 0

end parallel for
end if

end while

Fig. 7.4. Pseudocode of the cellular programming algorithm

Note also that there is a difference between the cellular programming al-
gorithm and classical cellular EAs or coevolving EAs such as those described
in Sect. 7.5.1. The latter are also structured and local, but the population
represents different potential solutions to the problem, whereas the CA grid
is “the solution” when the cellular programming algorithm terminates.

7.5.3 Results for the Density Task

Recall that Mitchell et al., as well as the other researchers, found that a lattice
radius of 3 was needed for a uniform CA to approximately solve the majority
task with high performance. Sipper studied the task using nonuniform, one-
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dimensional, minimal-radius (r = 1) CAs of size N = 149. Owing to the
nonuniformity, the search space involved is still vastly larger than the 2128

of radius-3 uniform CAs. In fact, since each cell contains one of 28 possible
rules this space is of size (28)149 = 21192. The most important result is that
evolved, nonuniform, r = 1 CAs show high performance on the task, rivalling
that of uniform radius-3 CAs, in spite of their smaller radius (see [132, 133]
for details).

The cellular programming algorithm used randomly generated initial con-
figurations, uniformly distributed over densities in the range [0, 1], with the
CA being run for M = 150 time steps (thus, computation time is linear with
grid size). It was found that the nonuniform CAs that coevolved consisted of a
grid in which one rule dominated, a situation referred to as quasi-uniformity
[133]. Basically, in a quasi-uniform CA, the number of distinct rules is ex-
tremely small with respect to the rule-space size; furthermore, the rules are
distributed such that a subset of dominant rules occupies most of the grid.

(a) (b)

Fig. 7.5. One-dimensional density task: operation of a coevolved nonuniform r = 1
CA. The grid size is N = 149. White squares represent cells in state 0, and black
squares represent cells in state 1. The pattern of configurations is shown through time
(which increases down the page). Initial configurations were generated at random.
(a) Initial density of ones is 0.40. (b) Initial density of ones is 0.60. The CA relaxes
in both cases to a fixed pattern of all zeross or all ones, correctly classifying the
initial configuration. Reproduced from [135] with the author’s permission

Figure 7.5 demonstrates the operation of one such coevolved CA. In this
example the grid consists of 146 cells containing rule 226, two cells containing
rule 224, and one cell containing rule 234. The nondominant rules act as
“buffers”, preventing information from flowing too freely, and making local
corrections to passing signals.
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Fig. 7.6. Two-dimensional density task: operation of a coevolved nonuniform two-
state, five-neighbor CA. The grid size is N = 225 (15 × 15). The initial density of
ones is 0.51, and the final density is 1. The numbers at the bottom of images denote
time steps. Reproduced from [135] with the author’s permission

The density task can be extended in a straightforward manner to two-
dimensional grids, an investigation that Sipper carried out [133], attaining
notably higher performance than in the one-dimensional case. Furthermore,
computation time, i.e. the number of time steps taken by the CA until con-
vergence to the correct final pattern, was shorter. Figure 7.6 demonstrates
the operation of one such coevolved CA. Qualitatively, we observe the CA’s
“strategy” of successively classifying local densities, with the locality range
increasing over time; “competing” regions of density 0 and density 1 are man-
ifest, ultimately relaxing to the correct fixed point.

7.6 Summary

The conclusion of this chapter is that coevolutionary algorithms are an ex-
tremely rich and powerful heuristic for machine learning and coadaptation.
Coevolution can indeed significantly improve the results of an evolutionary
search and is probably the only practicable approach when there is no knowl-
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edge about a suitable fitness function. Coevolution also has a few drawbacks,
related to the Red Queen effect and the persistence of mediocre stable states.
However, ways have been found to avoid most pitfalls.

Another empirical observation is that, once again, structured coevolving
populations seem to offer implicit advantages with respect to panmictic ones.
Confirming the observations in previous chapters, the benefits seem to be
related to the slow mixing and the preservation of diversity offered by the
lattice structures. For example, we have seen how the debilitating Red Queen
effect that is so often present in coevolutionary dynamics is mitigated by the
use of structured populations.

Finally, the case study of CA rule evolution for the majority task showed
that coevolution of structured populations offers several distinct advantages
for this difficult problem, in the form of both competitive coevolution and the
cooperative scheme of the cellular programming algorithm.
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Some Nonconventional Models

In this last chapter I would like to go beyond the established, relatively
straightforward structured-population models and provide a glimpse of other,
more complex models that have been proposed. Indeed, nature is by no
means mean in providing ideas and inspiration, and evolutionary-computing
researchers are very imaginative. As a result, many new models have appeared,
some of which seem promising. As mentioned before, we prefer simpler mod-
els, when they work well, because those are the ones that are easier to analyze
mathematically. The price to pay for using more complex ideas and models
is just that: even when they work satisfactorily, they are more difficult to
understand and to describe. However, the fact that we are unable to really
understand the dynamical properties of these models today should not pre-
vent us from using them, as long as they prove efficient. Some day we might
be better equipped to analyze their behavior and we could then include some
of those models in our problem-solving toolkit. After all, 20 years ago even
simple EAs were poorly understood by today’s standards, and we are now in
the position of using them nearly routinely.

As a matter of terminology, the coevolutionary structured models of the
previous chapter might also be considered nonstandard. After all, the sub-
populations or network vertices are not homogeneous, as was the case for all
the elementary models described earlier. However, given the large amount of
research that exists and their particular features, coevolutionary structured
EAs well deserve a chapter of their own. The same is true for the general graph
population topologies described in Chap. 6. In addition, topology-modified ho-
mogeneous structured models using more complex, perhaps hierarchical net-
work topologies for communication can also be considered nonconventional.
However, as explained in Sect. 1.2.3, we still know too little about these mod-
els, and therefore I prefer to leave them aside.
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8.1 Nonconventional Island Models

A number of nonconventional models based on sparsely communicating sub-
populations have been proposed. They operate at the level of either the evolu-
tionary parameters, the population composition, or the hierarchy of exchanges
between populations. For the sake of illustration, I have chosen to present two
models out of the many that have been proposed: the injection island model
and a system that uses variable-size populations.

8.1.1 The Injection Island Model

The injection island GA was proposed by Lin et al. in [93]. It is an extension of
the customary island model GA in which the subpopulations are not homoge-
neous; rather they search at different levels of resolution in the problem space.
Also, the subpopulation fitness function amd the representation of individuals
may differ among islands. The idea is to search at a lower resolution in some of
the islands and “inject” high-performance individuals into higher-resolution
islands to fine-tune the solutions. In general, low-resolution evaluation will
be less demanding and costly than fitness evaluation at higher levels. At the
same time, different GA parameters may be used in different-level islands,
including mutation and crossover rates, as well as communication rates.

The different resolutions of the GA representation are obtained by encoding
problem solutions with different numbers of bits. Thus an injection island GA
has multiple subpopulations that encode the same problem using different
block sizes.

Each subpopulation searches independently for a good individual at its
own resolution. At regular intervals, individuals are exchanged between pop-
ulations. Exchanges are only allowed up the ladder from a lower-resolution
to a higher-resolution node. This is reasonable, since in going from a low-
resolution to a high-resolution island translation to the appropriate block size
is required, and this can be done without loss of information only from lower-
to higher-resolution. On the basis of this rule, Lin et al. considered several
static communication topologies for sending individuals. An example is de-
picted graphically in Fig. 8.1. In the figure, islands with different levels of
resolution evaluate fitness using increasingly precise and sophisticated defini-
tions, which are correspondingly increasingly computationally expensive.

Lin et al. claim several advantages for the injection island GA with re-
spect to both standard panmictic GAs and homogeneous island GAs. They
enumerate the following beneficial effects:

• Building blocks of lower resolution can be found and maintained at that
resolution level. They can later be refined by a child island at a higher
resolution.

• The search space size at lower levels is effectively reduced in size, which
allows one to find promising solutions faster, and then inject them into
higher resolution islands for refinement.
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Fig. 8.1. Schematic representation of an injection island GA. The islands at each
level can communicate among themselves and search at that level of resolution. Ver-
tical arrows show communication from lower- to higher-resolution islands. Accuracy
increases up the ladder, while computational efficiency is better at low resolution
Redrawn from [44].

• Nodes that are connected in the ladder share portions of the same search
space and can thus cooperate in finding and refining good solutions.

• The algorithm favors finding an efficient problem partitioning, through a
divide-and-conquer strategy.

The injection island approach has been tested on difficult benchmark prob-
lems, including deceptive functions, and on real-life problems [44]. An ap-
plication to a difficult engineering problem, in particular, showed that the
methodology of searching at different levels of resolution is robust and out-
performs standard island GAs in terms of solution quality and computer time.
The structure of the algorithm can also easily accommodate searching for a
multicriterion objective function by using each individual criterion as the fit-
ness function of a subpopulation. On the other hand, compared with a stan-
dard island GA, the structure of the algorithm requires more care in choosing
appropriate representation levels and in tuning the model’s parameters.

8.1.2 Islands with Variable Population Size

Evolutionary algorithms, owing to their population structure, expend a com-
paratively large amount of computational effort to solve problems. This “pop-
ulation” effect is more marked when algorithms use variable-size chromosomes,
which has been traditionally the case in genetic programming. In fact, it has
been observed that GP individuals tend to steadily grow in size as generations
are computed. The phenomenon goes under the name of bloat, and there have
been several proposals aimed at preventing such an inordinate growth (see [92]
for a rather complete survey). For instance, the fitness function may embody
a penalty associated with the size of the individuals, so that short individuals
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are favored. Another proposal is to set a limit on the maximum size. Multi-
objective techniques have also be applied to GP in such a way that both the
size of individuals and the fitness are considered as simultaneous criteria to
be optimized [38]. Most of these techniques have some drawbacks: either they
change the way in which fitness is computed, thus influencing the structure of
the fitness landscape and the main characteristics of the problem, or they re-
quire additional computational costs to be implemented, often thwarting their
positive effects on size. Moreover, most proposed solutions focus on the size
of individuals and do not take into account the global problem of population
growth as a whole.

In some studies [52, 53, 120], bloat and the reduction of computational effort
have been approached employing another perspective: given that the increase
in the size of individuals produces an overall growth in the population, the
population size is made variable, in an attempt to control the computational
effort required for evaluating individuals. Variable-size populations have sel-
dom been used: two studies pertaining to GAs are [13, 45]. Another structured
model, called the patchwork model [90], will be described in Sect. 8.2.1.

Adding and Suppressing Individuals

If one looks at a typical EA run, one usually sees that fitness improves quickly
at the beginning of the run, while it tends to level off later in the run. This
suggests that many individuals of low quality do not contribute to the overall
population fitness at the beginning, while individuals tend to become fitter
but more uniform and do not provide sufficient evolvability later in the run. In
practice, since the population is partially converged, it is as if there were fewer
individuals. This leads to the idea of deleting individuals when fitness is still
improving vigourously, and of adding new individuals when the population
stagnates. Of course, one would like the system to do this automatically i.e.
that it should self-adapt its population size during the run.

In [120] it was suggested that the number of individuals to be deleted or
added should be some function of the slope of the fitness versus computational
effort curve. When fitness is rapidly improving, a proportionally larger number
of individuals is deleted. When fitness tends to stagnate and the slope of the
curve is less than a given value, individuals are added to the population. Of
course, the numerical details can vary widely. The original reference contains
details about the actual numerical expressions used and how they were chosen.

An important question is: which individuals are deleted and where do new
individuals come from? To avoid losing good genetic material and to fight
bloat, given a number of individuals to be deleted, they are chosen from the
worst in the population, and of those, the largest are selected. Individuals to
be added are not generated anew; instead, they come from another island and
are chosen from the best in that island. Their number is determined in such a
way that the original population size times a constant is not exceeded. Again,
fine details can be found in the original reference.
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Results for the Test Problems

The test problems described in Chap. 3 were used in the studies described
in what follows: the symbolic regression problem, the artificial ant problem
and the even-parity problem. The parameters of the GP system were also the
same as before. The topology of the system comprised five islands connected
according to a random communication topology. The only difference from the
standard model was the presence of a master process that receives immigrants
and sends the appropriate amount to a random island, since the sizes of the
populations are not the same.
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Fig. 8.2. Average fitness results vs. computational effort. Each curve is an average
over 100 runs. (a) Artificial ant, (b) even-parity-5, (c) symbolic regression

Evolution of Average Fitness

Figure 8.2 depicts the average fitness of the ensemble of islands for the three
benchmark problems as a function of the computational effort. The labels
M1, M2, M3, and M4 stand for four slightly different automatic methods for
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adding individuals when the system detects that the population must grow.
The details are not very important, and can be found in [120]. The values
are averages over 100 independent executions for each problem and for each
method. The thick black curves refers to the standard multipopulation model,
i.e. the model with fixed-size subpopulations.

For the ant problem (Fig. 8.2 a), we see that all four methods using a
dynamic population size give better results with respect to the standard fixed-
size-island model. For instance, to reach an average fitness of about 15, the
standard distributed model needs a computational effort of about 5.5 × 106,
while the same average fitness level is reached by the M1, M2, M3, and M4
variable-island-size methods with an effort that lies approximately between
2 × 106 and 3 × 106.

The even-parity-5 and symbolic regression problems (Figs. 8.2 b, c) show
the same general trend, i.e. the variable-size methods are all superior to the
standard method but the differences are smaller. Indeed, the standard devia-
tions at the end of the evolution for each problem (not shown in the figures to
avoid cluttering them) indicate that, while the differences are significant be-
tween the standard model and the ensemble of varying-population-size models
for the ant problem, they are not for the other two problems, the differences
between the various curves being of the same order as the standard deviation.

The success rate is a good performance indicator when the solution of the
problem is known, which is the case here (see Sect. 3.4 for a discussion of
this issue). Success rates for each problem are reported in Table 8.1 with
their standard deviations. These numbers confirm that, for the ant problem,
models with variable-size islands, whatever the method used for suppression
and addition of individuals, are better than the standard model. For the even-
parity-5 and symbolic regression problems, the results are still favorable to the
dynamic island models, since there is always a method among the four that is
better than the standard island model. However, for the remaining methods,
the differences are within the standard deviations and thus their statistical
significance is doubtful.

Evolution of Program Size

Figure 8.3 shows the evolution of the size of the programs in the populations
with time. It is easily seen that, in general, the methods M1, M2, M3 and
M4, that automatically adjust the population size in the islands offer an easy
and implicit means for limiting bloat. This has already been found to be
the case for the standard constant-size-island model with respect to standard
panmictic genetic programming [60]. Therefore, variable-size populations are
a really effective and transparent way for limiting bloat. Now, in the figure
it is apparent that method M3 is less effective than M1, M2, and M4 in this
respect. But since method M3 is allowed to add individuals to up to twice the
original population size, it is clear that this has a negative influence on bloat.
However, the other three methods offer performances that are equivalent to
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CE1 CE2 CE3

Standard 0.20(0.04) 0.28(0.04) 0.31(0.05)
M1 0.51(0.05) 0.56(0.05) 0.59(0.05)
M2 0.55(0.05) 0.60(0.05) 0.63(0.05)
M3 0.59(0.05) 0.61(0.05) 0.63(0.05)
M4 0.61(0.05) 0.65(0.05) 0.65(0.05)

(a)

CE1 CE2 CE3

Standard 0.04(0.02) 0.07(0.03) 0.08(0.03)
M1 0.05(0.02) 0.06(0.02) 0.07(0.03)
M2 0.12(0.03) 0.13(0.03) 0.16(0.04)
M3 0.07(0.03) 0.07(0.03) 0.08(0.03)
M4 0.04(0.02) 0.04(0.02) 0.08(0.03)

(b)

CE1 CE2 CE3

Standard 0.41(0.05) 0.44(0.05) 0.46(0.05)
M1 0.52(0.05) 0.53(0.05) 0.53(0.05)
M2 0.60(0.05) 0.61(0.05) 0.62(0.05)
M3 0.48(0.05) 0.49(0.05) 0.49(0.05)
M4 0.51(0.05) 0.52(0.05) 0.52(0.05)

(c)

Table 8.1. Success rates at three different values CE1, CE2, and CE3 of the compu-
tational effort for the three test problems and the five structured-population models.
(a) Artificial ant, (b) even-parity-5, (c) symbolic regression. The standard deviation
of each value is included in parentheses

M3, and thus program growth can be controlled best by using one of them. It
is clear that, since bloat is not controlled explicitly in the system, it would be
possible to add other bloat-reducing techniques. A good candidate could be
Poli’s “Tarpeian” method, which is theoretically justified and extremely easy
to implement [117].

Population Size

In Fig. 8.4 the evolution of the total population size for each problem and each
model is plotted. Our first remark is that, except in two cases, where the size
is allowed to grow past its initial value, the population size in the adaptive-
size models always remains smaller than in the standard model (horizontal
lines). This explains why the computational effort required is lower for the
same accuracy of the solution. We also see that the evolution of the total
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Fig. 8.3. Average population length times total population size is represented as a
function of generation number. The averages are over 100 independent runs for each
problem and for each model. The thick curves refer to the standard island model,
while the other curves refer to the varying-size-population models (see boxes). (a)
Artificial ant, (b) even-parity-5, (c) symbolic regression

population size for the four variable-size methods is clearly correlated with
the curves of program size shown in Fig. 8.3. This shows empirically that it is
possible to fight bloat by automatically adjusting the size of the populations
during the run. Considering that the total population size nearly always stays
below the constant size of the standard island system, one might fear that
diversity would tend to be lost in the variable-size system. However, in [120]
it was experimentally shown that this wass not the case, which is reassuring.

It is already empirically well known that multipopulation models are, in
general, advantageous with respect to the standard panmictic model, as we
have seen in detail in Chap. 3. With varying-size multipopulation systems one
finds even better results both in terms of success rates, and from the point
of view of the expenditure of effort and program size. But some caution is
called for: the findings shown here are empirical, and therefore, they cannot
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Fig. 8.4. Population size as a function of the generation number. Curves are av-
eraged over 100 runs for each problem and for each model. (a) Artificial ant, (b)
even-parity-5, (c) symbolic regression

be extrapolated beyond the simple benchmark problems studied. However, the
results are encouraging and show that self-adjusting, variable-size multipopu-
lation systems have something to offer in the way of limiting the computational
effort and efficiently solving problems with EAs.

8.2 Nonconventional Cellular Models

In the same way that the island model admits an almost endless series of vari-
ations, there are also several structured models that are based on the straight
cellular structure of Chaps. 4 and 5 but differ from it in some important re-
spect. I shall present two representative models of this class in this section.
The first one is in fact a hybrid variant, while the second uses dynamical
neighborhood structures.
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8.2.1 The Patchwork Model

This model was introduced in [90]. The main idea was to obtain inspiration
from concepts in ecology and population biology. Thus, individuals in the
system are mobile agents that live in an ecological niche and interact with
their neighborhood by gathering information through sensors, and possibly
act on their local environment. Individuals have other attributes such as a
maximum life span, mortality, and breeding abilities.

Agents live in a spatial structure that has the shape of a two-dimensional
grid. However, each cell in the grid can contain a number of individuals from
zero up to a maximum, not just one as in standard cellular EAs. As in cEAs,
individuals can migrate to neighboring patches according to some migration
policy. Thus, the system combines to some extent the properties of the island
and cellular models. Individuals are actually relatively complex agents that
act in a two-dimensional virtual world, in a manner similar to many “Alife”
models. Individuals can make decisions and adapt their behavior with respect
to the environment that they see close to their patch. Decisions are sched-
uled and executed, resolving any collision that may result from incompatible
decisions.

Each agent in the population is composed of two parts: its genome and
its motivation network. The genome is built from a solution vector, a set of
standard deviations, and a parameter vector. The solution vector x is used to
calculate the agent’s fitness through an evaluation function that is assumed
to be known. The vector of standard deviations σ is used to implement mu-
tation: xt+1 = xt +N(0, σ), where N(0, σ) is a vector of normally distributed
independent random numbers with zero mean and standard deviations σ. The
parameter vector p is used in the decision process of the agents, which is a
relatively complex process that uses the agent’s states, its inputs gathered
through sensors from their neighborhood, and the agent’s motivation vari-
ables. In fact, the agents have a set of adaptive behavioral rules that will
determine each individual’s actions. This is done through the decision-maker
that determines and schedules a behavior. The following is a pseudocode of
the control structure of the Patchwork model (rewritten from [90]):

initialize population
generation = 0
evaluate population
while not termination condition do

for all agents do
determine agent’s behavior pattern

for each cell do
for each behavior’s pattern do

resolve conflict
for for each agent in this cell with this behavior pattern do
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perform action
remove dead agents from the population
evaluate population
generation = generation + 1

end while

Each agent also has a reproductive behavior and a limited lifetime. Individ-
uals may die either because they have reached a maximal age or because their
mortality, which is anticorrelated with fitness, is high. Offspring also may die
when their fitness is low and their number exceeds the available room in a
patch. This behavior makes the population size in each patch a variable.

A simplified version of the patchwork system has been tested on some con-
tinuous function optimization problems in [90]. Many potential effects of the
full-fledged model are absent, but the flavor is the same. The results were good,
although the system’s complexity is to some extent overkill with respect to the
problems chosen. However, of course, many more suitable applications could
be found for the system.

In conclusion, the patchwork system is an interesting hybrid structured
evolutionary system that is somewhat reminiscent of other spatially extended
Alife agent-based systems such as Holland’s ECHO system [78] and Langton’s
SWARM [101]. The aim with these “ecological” simulation environments is
to model complex adaptive systems. However, their many features and details,
while they are an advantage for the appropriate problems, are probably not
well suited for straight optimization, where simplicity, speed, and problem-
dependent information are easier to obtain within standard heuristics such
as simulated annealing, tabu search, ant algorithms, and classical structured
EAs augmented with local search.

8.2.2 Dynamic Neighborhoods in Cellular Evolution Strategies

Cellular models, which are based on slow diffusion of individuals through a
regular grid have been described and analyzed at length in Chaps. 4 and
5. Weinert et al. [156] have recently proposed a dynamical, self-organizing
parallel evolution strategy model inspired by some previous work of Halpern
[75]. This model also has relationships to the random-graph-based population
structures of Chap. 6, although those were static, while the present model is
characterized by a dynamically changing topology.

At the beginning, the population structure is a random graph with N ver-
tices. An adjacency matrix L describes the connectivity of the population,
while Lj gives the structure of the local neighborhood of node j = 1, . . . , N .
Another matrix M describes the connections of next-nearest neighbors, and
it can always be calculated from L.
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The two main parts of the algorithm are the following. In the first phase, the
neighborhood structure Lj of individual j is altered as a function of the prede-
fined neighborhood dynamics. Connections can be added or deleted according
to those rules. After the “topology-variation” phase, an evolution strategy
[129] is applied to each individual locally in order to generate λ offspring.
Individuals for recombination are chosen from the local neighborhood Lj , and
the best offspring replaces individual j. The evolution is synchronous, and the
two parts of the algorithm are iterated until a termination criterion has been
reached.

Two set of rules were used to vary the neighborhood structure: deterministic
and probabilistic rules.

Deterministic Topology Adaptation

In the deterministic case, following Halpern, the new neighborhood depends
directly on the neighbor’s fitness. Each individual possesses two lists sorted
by fitness: a list of neighbors and a list of next-nearest neighbors. There is a
detaching and an attaching rule (Weinert et al. call them “coupling” and “de-
coupling” rules, respectively). The detaching rule says that the connections to
a certain percentage of the least fit neighbors will be suppressed. The attach-
ing rule, on the other hand, says that new connections will be created to a
given percentage of the best next-nearest neighbors. During time, this dynam-
ics will tend to favor links between fit individuals, while less fit individuals
will be dismissed and could even become isolated.

Probabilistic Topology Adaptation

The idea here is to let the topology of the system self-organize in such a way
that each individual always has some neighbor, and such that genetic oper-
ations that have been successful have an effect on the subsequent evolution.
The detaching rule stipulates that a connection to a neighbor is suppressed
if recombination with that neighbor produces an offspring that is worse than
the best offspring generated at that site in the current generation.

The attaching rule works as follows: if the number of connections to an indi-
vidual falls below a given threshold, a given number of new links to randomly
chosen individuals are established.

Weinert et al. implemented the system on a parallel multiprocessor ma-
chine. They performed a number of experiments, comparing the two struc-
tured schemes above with a standard panmictic evolution strategy, and a
parallel ES with a complete but static communication graph, respectively.
The functions used for the experiments were a 30-dimensional sphere model

f(x) = 100 +
30∑

i=1

x2
i ,
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and the 10-dimensional Rastrigin function (see also Sect. 5.4.3)

f(x) = 100 +
10∑

i=1

(x2
i − 10 cos (2πxi)).

Several interesting observations were made in [156]. First, in the self-or-
ganized dynamic-lattice algorithms, the deterministic rules tend to produce
isolated individuals, while the probabilistic topology update rules reintroduce
connections, and thus prevent individuals from becoming permanently de-
tached. With respect to a reference ES model with complete static connectiv-
ity between individuals, the dynamic ES with deterministic topology-change
rules has a higher convergence speed. On the other hand, the convergence ve-
locity of the dynamic model with probabilistic link updates is similar to that of
the standard ES. Overall, it was remarked that a parallel ES with probabilis-
tic communication links between individuals yields a relatively slow strategy
with a very good convergence probability. The authors of [156] also measured
speedup and found it appreciable but far from linear owing to a relatively
costly communication overhead; the main gains are in terms of convergence
probability and speed, especially for the multimodal Rastrigin function.

The overall impression is that the kinds of self-organizing structures used
there hold some promise for improving evolutionary heuristics that use struc-
tured populations. It may be of interest to couple the main ideas presented
here with populations structures that are less random, such as the graphs
described in the second part of Chap. 6.
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Implementation Notes

In this book, I have stressed models rather than implementations. This is con-
venient, since it allows a homogeneous mathematical and structural treatment
independent of any material computational constraints. In fact, it is the case
that any given structured model can be implemented in several different ways
on parallel or distributed hardware. This is one of the reasons why I consider
the models to be more fundamental than their implementations. Indeed, it has
too often been the case in the past that a model has been designed on the basis
of the available hardware, a consideration that tends to limit the model’s gen-
erality. Thus, structured EAs have often been identified with various kinds of
parallel or distributed hardware. The problem with this approach is that while
the models have an independent abstract value in themselves, their mapping
onto actual computational systems is time- and technology-dependent, since
hardware solutions evolve at quite a rapid pace.

On the other hand, when the need for an efficient structured EA arises in
any given application field, the chances are that the problem is a difficult one
and that it needs large amounts of computing time. It thus becomes important
in practice to be able to implement a suitable structured model in such a way
that it can make efficient use of the available computational resources. In
view of this situation, I think that it is useful to include in this appendix a
number of considerations on how to efficiently implement the main structured
EA models that have been described, especially those that are at the same
time algorithmically interesting from the evolutionary-computation point of
view and easy to map onto available computer hardware. The main purpose
is thus to give succinct descriptions of those parts of the algorithms that have
to take the underlying programming model into account in order to benefit
from the performance gains.
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A.1 Computing Environment

The preceding paragraph implicitly asks the following question: what is the
underlying computational configuration that we should use? There is not a
unique answer to that question. A systematic description of parallel and dis-
tributed hardware is beyond the scope of these notes. The reader can find
more detailed information in the review article [5] and in the references cited
therein. However, some considerations will help to understand the choices
made in this area.

In the last 20 years several waves, or fads, of high-performance comput-
ers have appeared, only to become obsolete a few years later. Thus, single-
instruction, multiple-data (SIMD) data-parallel computers such as the Con-
nection Machine have nearly disappeared, except in specialized fields such as
signal processing. The same can be said of vector supercomputers, which sur-
vive only in some high-performance-computing organizations. Shared-memory
parallel computers are still relatively popular, but they do not need to be con-
sidered separately since software tools exist for coding parallel programs in
message-passing style for these target architectures. The multiple-instruction,
multiple-data (MIMD) style of parallel computer architecture is still alive, but
mainly in the form of computer farms or networked clusters, where advantage
is taken of inexpensive off-the-shelf processor technology together with exist-
ing or specialized network infrastructure. It is this kind of computer config-
uration, which is likely to be available to most research groups, that will be
the target of our description, rather than costly esoteric parallel computers.

Having selected the kind of hardware environment, we still have to decide
what software tools are going to be used. Here, as well, there are several
reasonable alternatives (see, for example, [5]). However, for most practical ap-
plications, some form of message-passing plus process-management software
will be perfectly acceptable. Again, there are several possibilities. Here we
shall describe the use of the MPI software package, a popular process com-
munication and management tool that is sufficiently standardized and easy
to obtain and install.

A.1.1 MPI

MPI (Message Passing Interface) is a library of message-passing routines [142]
that has been standardized, and is portable across a broad base of com-
puting platforms. The MPI application programmer’s interface (API) was
defined in the mid-1990s by a large group of people from academia, gov-
ernment, and industry. The interface reflects people’s experiences with ear-
lier message-passing libraries, such as PVM. The goal of the group was to
develop a single library that could be implemented efficiently on a variety
of multiple-processor environments, including true parallel MIMD machines
and workstation clusters. This distributed programming environment is rather
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complete, as it supports process-to-process communication, group communi-
cation, setting up and managing communication groups, and interacting with
the environment. However, only a handful of primitives are really required to
efficiently program distributed EAs, which is an advantage, since the complete
environment is rather complex. The interested reader should refer to the offi-
cal MPI site [142], where useful information is given. In the following sections
I shall outline implementations of the main classes of structured EAs using
the MPI library, with an emphasis on island EAs. The program fragments will
concentrate on process management and on the communication parts of the
algorithm only, assuming that the standard evolutionary operations and their
implementation are well known to the reader.

A.2 Implementation of Island EAs

Multipopulation1 EAs can be implemented very naturally using one subpop-
ulation per processor on networked machines or MIMD parallel computers.
One big advantage of island EAs when implemented on distributed/parallel
hardware is that their communication and synchronization requirements are
rather reduced, which limits the overhead of working in distributed mode. In
the following two subsections, we shall see an outline of how these models can
be implemented using MPI and standard networked machines. The examples
will deal with the genetic programming case. Other EA heuristics such as GAs
or ESs can be dealt with in a similar way, and are even easier to implement
owing to the fixed-size representation of individual.

A.2.1 Synchronous Islands

The computation of a synchronous-island model for a EA can basically be
thought of as a collection of MPI processes, each process representing a popu-
lation for the specific GP problem. The processes/populations can be evolved
in parallel and can exchange information using the MPI primitives. The mes-
sages exchanged by these processes are (copies of) groups of GP individuals,
and the communication happens through another process called the master
which runs in parallel with the others and implements a given communication
topology.

The code used for all the simulations presented in this book was imple-
mented in C++ and used the MPICH library [104, 105, 138], and it was
designed starting from the public-domain GPC++ package [58].

Let cfg be a reference to one instance of the GP process;
cfg.NumberOfGenerations be the maximum number of generations the GP
system has to perform and let freq be the number of generations elapsed
1 I thank Leonardo Vanneschi for his help with the implementation of island models.

See also [150].
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between two successive exchanges of individuals between subpopulations; the
algorithm performed by each process/population can be described by the fol-
lowing code fragment (where some details have been omitted and replaced by
“...”):

for (int gen=1; gen<=cfg.NumberOfGenerations; gen++) {

pop->generate (*newPop);

// Delete the old generation and make the new the old one

if (!cfg.SteadyState)

{

delete pop;

pop=newPop;

}

...

pop->sortIndividuals();

if ((gen % freq) == 0) {

pop->send (0, num_indiv_to_exchange);

pop->receive (0, num_indiv_to_exchange);

}

...

}

The main loop contained in this code is the one that allows the system to ex-
ecute the iterative EA process. The statement “pop->generate (*newPop)”
allows the system to create a new population (recorded in the variable newPop)
by the successive application of the selection, crossover, and mutation opera-
tors. After that, the newly generated population replaces the old one, which
is deleted from memory by means of the delete method. The behavior of this
method is the deallocation of the memory that has been allocated to pop. Its
implementation will not be described here. Of course, the copying of the new
population into the old one and the deletion of the old one, are executed only
if generational EA is being executed. The case of the steady-state functioning
of the algorithm is not described here. After the population has been updated,
its individuals are sorted on the basis of their fitness. This sorting algorithm
places the best individual contained in the population in the first indexing
position (index = 0) and the worst one in the last position. The last step
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is the commmunication of a group of (good) individuals to another island,
which takes place once every freq generations. This is realized by the send
and receive methods which use the MPI Send and MPI Recv operations. The
parameters of the send method are the process number (pid) that the infor-
mation is sent to (the process with pid = 0 in this case, i.e. the master process)
and the number of individuals to be exchanged. Analogously, the parameters
of the receive method are the sender and the number of individuals to be
exchanged. Here is a fragment of code describing the behavior of the send
method:

void MyPopulation::

send (int dest, int tag, int num_indiv_to_exchange) {

int* global_buffer[num_indiv_to_exchange];

for (int j = 0; j < num_indiv_to_exchange; j++) {

NthMyGP(j)->pack (global_buffer[j]);

}

MPI_Send (global_buffer, num_indiv_to_exchange,

MPI_INT, 0, 1, MPI_COMM_WORLD);

}

The for loop at the beginning of this method allows the method to group
into the same data structure all the information that has to be sent (i.e. all
the information contained in all the individuals to be exchanged). The pack
method is used to compress the information that is necessary to reconstruct
a single individual. This method uses the MPI Pack primitive. Each packed
individual is stored in a line of the global buffer data structure. Recording
all the information in a single data structure allows the method to call just
one MPI Send primitive in order to send all the requested individuals to the
master. This is very important, because it allows the system to save the time
overhead derived from the execution of many different send operations, with
their associated latency times. The implementation of the pack method can
be described by the following program fragment:

void MyGene::pack(int buffer[])

{

int mynode=node->value();

MyGene* current;
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if (isFunction())

{

MPI_Pack (&mynode, 1, MPI_INT, buffer,

number_of_nodes*sizeof(int),

&current_buffer_position_for_send, MPI_COMM_WORLD);

for (int n=0; n<containerSize(); n++)

{

current=NthMyChild(n);

current->pack(buffer, number_of_nodes);

}

}

else

{

MPI_Pack (&mynode, 1, MPI_INT, buffer,

number_of_nodes*sizeof(int),

&current_buffer_position_for_send, MPI_COMM_WORLD);

}

}

Basically, the MPI Pack primitive is called to insert, into the compressed
structure called buffer, the information contained in each node of the tree to
be packed. For this reason, when the current node represents a function, the
pack method has to be called recursively over all its sons. The code would be
simpler for a fixed-size data structure such as a bit string or a vector of real
parameters.

The following fragment of code describes the implementation of the receive
method:

void MyPopulation::receive (int sender,

int num_indiv_to_exchange) {

int* global_buffer[num_indiv_to_exchange];

...

MPI_Recv (global_buffer,

num_indiv_to_exchange,

MPI_INT, sender, tag, MPI_COMM_WORLD, &status);
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for (int j = 0; j < num_indiv_to_exchange; j++) {

NthMyGP(containerSize()-1-j)->unpack(global_buffer[j]);

}

}

Symmetrically to what happens in the send method, a package containing
a group of compressed individuals is received from the master using a single
MPI Recv primitive call. Then, the information is uncompressed by the unpack
method, which receives as input one line of the global buffer structure (i.e.
one compressed individual) and returns an instance of the MyGP class con-
taining all the information stored in that individual that is needed in order
to reconstruct the tree. The received individuals are placed at the bottom of
the sorted population, i.e. they replace the worst ones. The containerSize()
method returns the total number of individuals that make up each subpop-
ulation. The implementation of the unpack mathod can be described by the
following code fragment:

void MyGP::unpack (int global_buffer_row[])

{

int r;

MPI_Unpack (global_buffer_row, number_of_nodes*sizeof(int),

&current_buffer_position_for_receive,

&r, 1, MPI_INT, MPI_COMM_WORLD);

GPNode& tempfunc=searchForNode (r);

MyGene& g=*createGene (tempfunc);

if (g.isFunction()) {

g.unpack(global_buffer_row);

}

}

Each node of the tree to be reconstructed is uncompressed by one call to the
MPI Unpack primitive. For this reason, the method is called recursively over
the sons of each nonterminal node. Each uncompressed node is transformed
into a gene by means of the createGene method, whose description can be
found in [58].

The last part of this subsection is dedicated to a description of the algorithm
for the master process. It is very simple and can be described by the following
code fragment:
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int master (int my_rank, int num_p_total, int num_pop_to_ex,

int freq) {

for (int k = 0; k < num_p_total; k++) {

already_calculated[k] = -1;

}

for (int gen=1; gen<=number_of_generations; gen++) {

if ((gen % freq) == 0) {

for (int i = 1; i < num_p_total; i++) {

MPI_Recv (global_buffer,

num_pop_to_ex*biggest_column[0],

MPI_INT, i, 1, MPI_COMM_WORLD, &status);

destination = calculate_destination (i, num_p_total,

already_calculated);

already_calculated[destination] = 1;

MPI_Send (global_buffer,

num_pop_to_ex*biggest_column[0],

MPI_INT, destination, 1, MPI_COMM_WORLD);

}

}

}

}

The master process keeps track of all the slave processes to which a group
of individuals has already been sent, by means of the vector of flags called
already calculated. It executes a loop like the one executed by the slave
processes, in order to iterate over the generations. At every freq generations,
it receives a package from each slave process and, for each one of them, it
sends the package to a new process, whose pid has been calculated by the
calculate destination method. This method is used to implement the par-
ticular topology chosen. For instance, implementation of a the random topol-
ogy can be described by the following code fragment:

int calculate_destination (int sender, int num_p_total,

int already_calculated[]) {

int destination;

destination = (rand() % (num_p_total -1)) + 1;
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if (already_calculated [destination] != -1) {

int i = destination;

while (already_calculated[i] != -1) i= (i+1) % num_p_total;

destination = i;

}

return (destination);

}

In this case, the calculate destinationmethod generates a random num-
ber (called destination in the code fragment), representing the pid of a
slave process. If a package has already been sent to the process whose pid
is equal to destination during this generation (i.e. if already calculated
[destination] equals −1), then the list of the process pids is covered un-
til one process that has not received a package yet is found. That process is
returned as the destination of the next package shipment.

A.2.2 Asynchronous Islands

In the case of asynchronous communication among islands, no master process
is implemented: an idea of the communication topology is integrated into each
process/population. The high-level code executed by each process/population,
in the simple case of a ring topology, looks as follows:

...

MPI_Request request_send;

MPI_Request request_receive;

MPI_Status status_send;

MPI_Status status_receive;

...

for (int gen=1; gen<=cfg.NumberOfGenerations; gen++) {

pop->generate (*newPop);

...

if ((gen % freq) == 0) {

request_send = pop->send (((my_rank+1) % num_p_total),

num_indiv_to_exchange);

int sender;

if (my_rank > 0) {

sender = my_rank - 1;

} else {

sender = num_p_total - 1;

}

request_receive = pop->receive (sender,

num_indiv_to_exchange);

vect_of_request[current_position] = request_receive;



166 A Implementation Notes

current_position++;

}

for (int z = 0; z < current_position; z++) {

if (received[z] == 0) {

MPI_Test(&(vect_of_request[z]), &flag, &status_receive);

if (flag) {

for (int j = 0; j < num_indiv_to_exchange; j++) {

pop->NthMyGP(pop->containerSize()-1-j)->

unpack(global_buffer);

}

received[z] = 1;

}

}

}

...

}

This time, the send and receive methods are both implemented using non-
blocking MPI primitives. For this reason, tests for termination of communica-
tions must be performed. This is the reason for the presence of the variables
request send, request receive, status send and status receive, repre-
senting the hanging requests of sending and receiving a group of individuals
and the status of these requests. In order to make parallel execution more
efficient, a vector of requests is used, allowing the system to wait for termi-
nation of all the hanging communication operations at one time. As the code
fragment above shows, once a receive operation is completed, the content of
the message is read and unpacked (via the unpack method, which is exactly
the same as in the case of synchronous islands described in Sect. A.2.1). Re-
ceived individuals replace the worst ones as usual, since the population has
been sorted by fitness before executing the communications. The same test
for termination is implemented for the status of the send operation (code
omitted for simplicity). Tests for termination of the sending and receiving
operations are implemented by the MPI Test function, which returns a vari-
able, called test in the above fragment. If the value of test equals one, the
communication operation is completed and the execution can proceed.

The implementation of the send method is slightly different from the case
of synchronous communications described in Sect. A.2.1, the main differences
being that a value is returned by the method, representing a handle for the
request for execution of the current operation, and that the MPI function used
is MPI Isend, i.e. the nonblocking send primitive of MPI. Here is a fragment
of code describing the behavior of the send method:
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MPI_Request MyPopulation::

send (int dest, int tag, int num_indiv_to_exchange) {

int* global_buffer[num_indiv_to_exchange];

for (int j = 0; j < num_indiv_to_exchange; j++) {

NthMyGP(j)->pack (global_buffer[j]);

}

MPI_Isend (global_buffer, num_indiv_to_exchange,

MPI_INT, dest, 1, MPI_COMM_WORLD, &request);

return(request);

}

The send method returns a variable of type MPI Request, indicating a
handle for the request for execution of the current asynchronous send.

Analogously, the implementation of the asynchronous receive method can
be described by the following code fragment:

MPI_Request MyPopulation::receive (int sender,

int num_indiv_to_exchange) {

int* global_buffer[num_indiv_to_exchange];

...

MPI_Irecv (global_buffer,

num_indiv_to_exchange,

MPI_INT, sender, tag, MPI_COMM_WORLD, &request);

return(request);

}

In this case also, the MPI function used for communication is a nonblocking
one (MPI Irecv) and the value returned by this method is a variable of type
MPI Request, representing a handle for the request for execution of the current
receiving operation. Given that it is necessary to unpack the received message
only when the receive operation is completed and given that it is more efficient
to test all the receive operations at once, and to proceed with the unpacking of
the first received message, the unpack operation is called outside the receive
function, as shown above. This is not the case for the send function, since the
pack operation must be performed before the MPI Isend.



168 A Implementation Notes

A.2.3 Summary

In conclusion, straightforward island models are easy to implement on dis-
tributed or parallel machines, and have been empirically shown to be effi-
cient problem-solvers both from the algorithmic point of view and in terms
of elapsed time. A useful description of how practically to build one such
computational cluster is given in [83].

Several evolutionary-computation packages that include the possibility of
distributing the load over multiple machines and of communicating between
them are publicly available. The following short list, with pointers to relevant
web pages, is not meant to be exhaustive; it is just an indication of where to
find this kind of software at the time of writing.

• The DREAM Project (various European partners):
http://www.dcs.napier.ac.uk/%7Ebenp/dream/dream.htm

• Open BEAGLE (Laval University):
http://beagle.gel.ulaval.ca/index.html

• ECJ (George Mason University):
http://cs.gmu.edu/ eclab/projects/ecj/

• GALOPPS and lilgp (Michigan State University):
http://garage.cps.msu.edu/

A.3 Implementation of Lattice Cellular EAs

Regular grid EAs are easy to implement on distributed or parallel systems
in the synchronous case. Difficulties may arise only in two cases: when they
are to function asynchronously in time and when the computational load is
different on different CPUs. These cases are briefly discussed below.

A.3.1 Synchronous Cellular EAs

At the beginning of the 1990s, the hardware of choice for implementing syn-
chronous cEAs was SIMD machines such as the Connection Machine and
Maspar. Lattice population structures can be mapped straightforwardly onto
such architectures, with one or more individuals (cells) per computational
unit. In the frequent case where there are more cells than processors, several
cells are assigned to each processor; The processors are multiplexed and deal
with each cell sequentially. Today, however, this data-parallel machine archi-
tecture has been relegated to specialized computational tasks and is no longer
easily available. Nevertheless, using the MPI message-passing paradigm on a
standard networked or multiprocessor system, it is easy to implement syn-
chronous cellular EAs simply by domain decomposition. As an example of
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the technique, we may take the case of a two-dimensional grid (see Chap. 4).
Figure A.1 schematically depicts the situation: each processor gets a portion
of the grid to work with and does its work independently of the other pro-
cessors. Each processor in fact implements a standard sequential algorithm
to synchronously update each individual in its grid patch and does not need
to access the memory of other processors except for the points on the border
region. Those points need the values of the individuals nearby in the surround-
ing patches, as only first neighbors interact. Thus, the only communication
needed is the swapping of edge values between neighboring regions, which,
since these regions are managed by different processors, requires those pro-
cessors to send and receive the corresponding messages, and this needs to
be done before each time step. Since the workload on all processors is anal-
ogous, communication can be synchronously blocking, which maintains the
same update order as in the sequential case. If the surface/perimeter ratio of
the patches in the domain decomposition is sufficiently high, so as to minimize
communication overhead, then performance is good on workstation clusters.

Fig. A.1. Domain decomposition of a two-dimensional lattice. The square domain
is broken into square subdomains, subdomains are assigned to different processors,
and each processor simultaneously and independently works on its subdomain. Only
individuals in the shaded regions need to be communicated between processors

There can be a problem with the aaabove scheme only when the workload
of each processor is not the same. This can happen, for instance, in genetic
programming, where the evaluation phase, which is usually the more time-
consuming, can take widely different times owing to the different size and
complexity of difefrent individuals. If the differences are severe, performance
will suffer since the computational time per update step will be determined by
the slowest processor. This problem can be solved in two ways: either one has
to use load-balancing techniques, or one can dispense with strict generational
evolution. A clever load-balancing solution, with performance analysis, has
been suggested by Spezzano and coworkers and can be found in [56]. The
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second solution is easier, as it does not require explicit load balancing and
can be implemented similarly to asynchronous islands. However, it changes
the nature of the algorithm, which can no longer be considered as equivalent
to the sequential synchronous version.

A.3.2 Asynchronous Cellular EAs

Asynchronous cellular EAs using random cell update rules such as uniform up-
date or random-sweep update (see Chaps. 4 and 5) are difficult to implement
efficiently on standard distributed hardware. Straightforward domain decom-
position techniques such as the one described in the previous subsection will
not work when one single random cell is updated at each time step. However,
variations of those models can be implemented efficiently. For instance, in the
random-sweep model, the list of cells to be updated is a random permuta-
tion of the n cells in the lattice. Assume that, as before, each processor is
assigned one square sublattice to work with. Once the permutation of cells
has been generated, all the subpermutations pertaining to each subblock are
known. Each processor also has the information about which cell is connected
to which in the subblock, i.e. the x–y coordinates of all the cells. Border val-
ues can be exchanged between processors as before. By ignoring changes at
the boundaries between lists, the algorithm can now be parallelized efficiently,
since each processor will work simultaneously and independently on its own
list. The only overhead, apart from sparse communication, arises from the
setup of the lists in each processor.

A.4 Performance Measures and Speedup

It should be clear that the kind of performance we are interested in here is the
time efficiency of the algorithms, and not their quality as problem solvers in
the evolutionary sense, an aspect that has been dealt with at length in the rest
of the book. The discussion here closely parallels that given in [5]. Computing
the speedup of a parallel algorithm is a well-accepted way of measuring its
efficiency. Although the use of speedup is very common in the field of deter-
ministic parallel algorithms, it has been adopted in the field of parallel EAs
in several flavors, not all of them with a clear meaning. In this section I shall
present some concepts related to speedup and discuss their meaning when
applied to evaluation of the efficiency of a given parallel/distributed EA.

I shall begin by revisiting the traditional definition of speedup. The well
known definition (see e.g. [2]) relates the (worst) execution time of the best
sequential version, T1, to the (worst) execution time of the parallel version of
the algorithm on m processors, Tm:

Sm =
T1

Tm
.
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With this definition we can distinguish between:

• sublinear speedup Sm < m,
• linear speedup Sm = m, and
• superlinear speedup Sm > m.

The first modification we need to introduce in the standard definition of
speedup is to consider average times in the ratio. The reason is that EAs are
stochastic algorithms in which a single execution is not statistically signifi-
cant. This means that we need to average a sufficient number of statistically
independent runs in order to have representative time values, and hence

Sm =
T 1

Tm

.

However, even when we use average times, the traditional definition remains
unclear in the field of evolutionary algorithms since it makes the assumption
that we are aware of the best algorithm to solve the problem. Let us call
this the strong definition of speedup (Type I in Table A.1). Some practical
problems arise with this definition. Firstly, it is difficult, if not impossible, to
decide whether or not a sequential EA is the best algorithm, since oftentimes
it is the only existing algorithm that has been tried for the problem (e.g.in the
case of new applications). Secondly, it is usual when analyzing EAs to study a
large set of problems; the strong definition requires the researcher to be aware
of the fastest algorithm that solves any of the problems being tackled. This
scenario is often not a realistic situation when heuristics are involved.

These reasons have traditionally led researchers to measure the speedup by
comparing their own sequential and parallel algorithms. Let us introduce a
weak definition of speedup (type II in Table A.1) to the extent to which it is
possible that a different algorithm exists (probably not an EA) that solves the
problem faster in sequential mode. This definition will allow us to compare our
parallel EA against well known sequential EAs, therefore studying the speedup
without the need to involve nonevolutionary algorithms in the analysis.

I. Strong speedup
II. Weak speedup

A. Speedup with solution-stop
1. Versus panmixia
2. Orthodox

B. Speedup with predefined effort

Table A.1. Taxonomy of speedup measures

The next important point relating to a weak definition is the stopping
criterion. Speedup could be studied by imposing a predefined global number of
iterations on both the sequential and the parallel EA. Let us call this a measure
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of type II.B (Table A.1). In general, this kind of measure is unfair, since it
compares two algorithms that are working out solutions of different fitness
(quality), thus breaking the fundamental statement that they are “solving”
the same problem with the “same” precision. This stopping criterion can be
useful in some other situations where, for example, the same effort is allocated
to different algorithms to compare their final error, but not when speedup is to
be measured. Other researchers [26] have also mentioned these considerations.

Therefore, we need a meaningful and fair termination criterion. The obvious
candidate is to stop the algorithms that are being compared when a solution
of the same quality has been found, usually an optimal solution. This is called
an orthodox weak definition, or type II.A.2 (Table A.1).

Let us try to get a deeper understanding of the orthodox weak definition.
One important consideration is the composition of the sequential EA. If we
were to follow the old-fashioned concept that a “sequential” EA is a “pan-
mictic” EA, we would compare a panmictic (sequential single-population) EA
with, for example, a distributed EA of d islands, each one running on a differ-
ent processor. We call this a panmixia versus weak comparison (type II.A.1
in Table A.1). But the algorithm running on a single processor is panmictic
in this case, while the d islands that are using d processors represent a dis-
tributed migration model whose algorithmic behavior is quite different from
that of the panmictic one. This can sometimes produce a very different result
for the numerical effort needed to locate the solution, and thus very different
search times can be obtained (in general, faster and more accurate search for
the distributed version, see Chap. 3). In fact, it could lead to obtaining a su-
perlinear speedup, since a distributed EA running parallel islands can locate
a solution more than d times faster than the panmictic one [8], although this
need not always be the case.

In order to have a fair and meaningful definition of speedup for parallel EAs,
we need to consider exactly the same algorithm (for example, the distributed
algorithm with d islands) and then only change the number of processors,
from 1 to d, in order to measure the speedup (orthodox weak definition). In
any case, the speedup measure should be as fair and as close to the traditional
definition of speedup as possible.

Another important point, and an obvious result in parallel computing, is
the Amdhal’s law [82], namely that adding more processors usually causes
a loss of efficiency. Only some models are scalable (more efficient) with an
increasing number of processors. Normally, if we add more processors, then
we should at the same time increase the population sizes, in order to keep a
good computation-to-communication ratio.

We now turn to a striking point. Many authors have analyzed parallel EAs,
attending to different criteria, and many have obtained superlinear speedup
when using a parallel machine [12, 19, 131]. After having discussed alternative
methods to measure the speedup we still have to address one question: is it
really possible to obtain superlinear speedup in parallel EAs? The answer to
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this question is “yes”. In short, the sources for superlinear speedup are (see
[3] for more details)

• there is a higher chance of finding an optimum by using more processors,
owing to the intrinsically heuristic multipoint nature of parallel EAs;

• splitting a large global population into smaller subpopulations that fit into
the processor caches provides faster algorithms than using a single main
memory; and

• the operators work on much smaller data structures and they do so in
parallel, which is an additional source of speedup.

A.5 A Remark on Pseudorandom Number Generators

I shall end this appendix on technical matters with a short discussion of the
possible dangers of generating and using pseudorandom numbers (PRNs) in
evolutionary algorithms. The issue has been dealt with in [98] and references
therein, to which I shall refer for further experimental details.

EAs are stochastic heuristics that use PRNs rather heavily. Typically, non-
deterministic decisions are made when an initial population is generated, when
individuals are selected for reproduction, and in the application of most vari-
ation operators. Thus, we must be reasonably certain that our methods for
generating PRNs are good enough. First, let us briefly review some important
concepts in the field. The presentation here is necessarily limited; the reader
will find an excellent in-depth study of the issue in Knuth’s classic book [88].

Although one could think of using some natural phenomenon believed to
be random, more pragmatically, pseudorandom number generators are used;
these are deterministic algorithms that generate strings of numbers that, for
most purposes, appear to be random. Given that these sequences cannot be
really random, their degree of randomness is gauged by applying a number of
statistical tests, such as those described in [88, 97].

In the following the treatment is limited to uniformly distributed sequences
of pseudorandom numbers, which is the distribution most often used in EAs;
however, there are well-known ways for obtaining sequences distributed in
other ways starting from uniformly distributed ones.

Random number generators must possess several properties if they are to be
useful in lengthy stochastic simulations such as those used in computational
physics. The most important properties from this point of view are good
results on standard statistical tests for randomness, computational efficiency,
a long period, and reproducibility of the sequence.

There exist many ways for generating random numbers on a computer, the
most popular one being the linear congruential generators. Linear congruential
generators are based on the following recurrence formula:

Xn+1 = (aXn + c) mod m, n ≥ 0, m > 0, 0 < a < m.



174 A Implementation Notes

The value m > 0 is called the modulus, a is the multiplier, and c is an additive
constant. Reference [88] describes in great detail how to pick suitable values
for these parameters. The sequence clearly has a maximum possible period of
m, after which it starts to repeat itself. Linear congruential generators are
very popular among researchers, and most mathematical software packages
include one (or more).

Lagged-Fibonacci generators are also widely used. They are of the form

Xn = (Xn−r op Xn−p) mod m.

The numbers r and p are called lags, and there are methods for choosing them
appropriately (see [88]). The operator op can be one of the following binary
operators: addition, subtraction, multiplication, or exclusive or.

A third widespread type of generator is the linear feedback shift register
(LFSR) generators. A pseudorandom sequence is generated by the linear re-
cursion equation

Xn = (c1Xn−1 + c2Xn−2 + . . . + ckXn−k) mod 2.

Linear feedback shift registers are popular generators among physicists and
computer engineers. There exist forms of LFSR that are suitable for hardware
implementation.

Another popular type of PRN generators is based on cellular automata
[79, 148]. It has been shown that these generators can be of very good quality
and can easily be implemented in hardware.

In [98] Meysenburg and Foster, using several widely used PRN generators
and a set of standard GP test problems, did not find any statistically signifi-
cant influence of the quality of the generator on the results. On the other hand,
Daida et al. [36] found that PRN generators had an effect on the quality of
solutions, using another test problem and different generators. On the whole,
it seems unlikely that standard good generators will cause any large bias in
EA algorithms, although the influence on other aspects of the population such
as diversity has not yet been sufficiently investigated. After all, the sequences
needed are not very long, as a quick back-of-the-envelope calculation shows.
With a population size of 1000, a run that lasts 100 generations, and assuming
that all the individuals will be affected by selection, one-point crossover, and
mutation, one has of the order of 3 × 103 × 102 = 3 × 105 random numbers
in the sequence. This is a far cry from typical statistical-physics simulations
which may require on the order of 1010 random numbers. At this scale, corre-
lations and other effects, such as too short a period, that may remain hidden
in shorter sequences may become important, and indeed some Monte Carlo
simulations in physics have been shown to be heavily biased owing to statis-
tical problems in the random-number sequences. The problem does not seem
to be as serious for EAs, as we have seen, unless the generator is a really bad
one. However, a wise conclusion for this section could perhaps be the follow-
ing. While different PRN generators do not seem to have a significant effect
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on EA computation, we are tending to use larger and larger populations and
longer runs, which in turn require more PRNs. Therefore, to be on the safe
side, it is a good idea to employ reliable generators, since usually they do not
cost more to implement and use. Extra care has to be taken when multiple
processes are used, for in this case there is the risk that the same seed may be
chosen in different processes, which would lead to spurious correlations. This
can be easily avoided in several ways: one possibility is to use the clock time
as the seed.
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14. T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, New
York, 1996.
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